964 resultados para flame kernel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In any thermoacoustic analysis, it is important not only to predict linear frequencies and growth rates, but also the amplitude and frequencies of any limit cycles. The Flame Describing Function (FDF) approach is a quasi-linear analysis which allows the prediction of both the linear and nonlinear behaviour of a thermoacoustic system. This means that one can predict linear growth rates and frequencies, and also the amplitudes and frequencies of any limit cycles. The FDF achieves this by assuming that the acoustics are linear and that the flame, which is the only nonlinear element in the thermoacoustic system, can be adequately described by considering only its response at the frequency at which it is forced. Therefore any harmonics generated by the flame's nonlinear response are not considered. This implies that these nonlinear harmonics are small or that they are sufficiently filtered out by the linear dynamics of the system (the low-pass filter assumption). In this paper, a flame model with a simple saturation nonlinearity is coupled to simple duct acoustics, and the success of the FDF in predicting limit cycles is studied over a range of flame positions and acoustic damping parameters. Although these two parameters affect only the linear acoustics and not the nonlinear flame dynamics, they determine the validity of the low-pass filter assumption made in applying the flame describing function approach. Their importance is highlighted by studying the level of success of an FDF-based analysis as they are varied. This is achieved by comparing the FDF's prediction of limit-cycle amplitudes to the amplitudes seen in time domain simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

About 50-90 percent of the hydrocarbons that escape combustion during flame passage in spark-ignition engine operation are oxidized in the cylinder before leaving the system. The process involves the transport of unreacted fuel from cold walls towards the hotter burned gas regions and subsequent reaction. In order to understand controlling factors in the process, a transient one-dimensional reactive-diffusive model has been formulated for simulating the oxidation processes taking place in the reactive layer between hot burned gases and cold unreacted air/fuel mixture, with initial and boundary conditions provided by the emergence of hydrocarbons from the piston top land crevice. Energy and species conservation equations are solved for the entire process, using a detailed chemical kinetic mechanism for propane. Simulation results show that the post-flame oxidation process takes place within a reactive layer where intermediate hydrocarbon products are formed at temperatures above 1100-1200 K, followed by a carbon monoxide conversion region closer to the hot burned gases. Model results show that most of hydrocarbons leaving the crevice are completely oxidized inside the cylinder. The largest contribution of remaining hydrocarbons are those leaving the crevice at temperatures below 1400 K. The largest fraction of non-fuel (intermediate) hydrocarbons results from hydrocarbons leaving the crevice when core temperatures are around 1400 K Copyright © 1997 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of Lewis number on turbulent premixed flame interactions is investigated using automatic feature extraction (AFE) applied to high-resolution flame simulation data. Premixed turbulent twin V-flames under identical turbulence conditions are simulated at global Lewis numbers of 0.4, 0.8, 1.0, and 1.2. Information on the position, frequency, and magnitude of the interactions is compared, and the sensitivity of the results to sample interval is discussed. It is found that both the frequency and magnitude of normal type interactions increases with decreasing Lewis number. Counternormal type interactions become more likely as the Lewis number increases. The variation in both the frequency and the magnitude of the interactions is found to be caused by large-scale changes in flame wrinkling resulting from differences in the thermo-diffusive stability of the flames. During flame interactions, thermo-diffusive effects are found to be insignificant due to the separation of time scales. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spray combustion characteristics of rapeseed methyl esters (RME) were compared to Jet-A1 fuel using a gas turbine type combustor. The swirling spray flames for both fuels were established at a constant power output of 6 kW. The main swirling air flow was preheated to 350 C prior to coaxially enveloping the airblast-atomized liquid fuel spray at atmospheric pressure. Investigation of the fundamental spray combustion was performed via measurements of the fuel droplet sizes and velocities, gas phase flow fields and flame reaction zones. The spray flame droplets and flow fields in the combustors were characterised using phase Doppler anemometry (PDA) and particle imaging velocimetry (PIV) respectively. Flame chemiluminescence imaging was employed to identify the flame reaction zones. The highest droplet concentration zone extends along a 30 angle from the symmetry axis, inside the flame zone. Only small droplets(<17 μ) (<17 μm)are found around the centreline region, while larger droplets are found at the edge of the spray outside the flame reaction zone. RME exhibits spray characteristics similar to Jet-A1 but with droplet concentration and volume fluxes four times higher, consistent with the expected longer droplet evaporation timescale. The flow field characteristics for both RME and Jet-A1 spray flames are very similar despite the significantly different visible characteristics of the flame reaction zones. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-supervised clustering is the task of clustering data points into clusters where only a fraction of the points are labelled. The true number of clusters in the data is often unknown and most models require this parameter as an input. Dirichlet process mixture models are appealing as they can infer the number of clusters from the data. However, these models do not deal with high dimensional data well and can encounter difficulties in inference. We present a novel nonparameteric Bayesian kernel based method to cluster data points without the need to prespecify the number of clusters or to model complicated densities from which data points are assumed to be generated from. The key insight is to use determinants of submatrices of a kernel matrix as a measure of how close together a set of points are. We explore some theoretical properties of the model and derive a natural Gibbs based algorithm with MCMC hyperparameter learning. The model is implemented on a variety of synthetic and real world data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Screech is a high frequency oscillation that is usually characterized by instabilities caused by large-scale coherent flow structures in the wake of bluff-body flameholders and shear layers. Such oscillations can lead to changes in flame surface area which can cause the flame to burn unsteadily, but also couple with the acoustic modes and inherent fluid-mechanical instabilities that are present in the system. In this study, the flame response to hydrodynamic oscillations is analyzed in a controlled manner using high-fidelity Computational Fluid Dynamics (CFD) with an unsteady Reynolds-averaged Navier-Stokes approach. The response of a premixed flame with and without transverse velocity forcing is analyzed. When unforced, the flame is shown to exhibit a self-excitation that is attributed to the anti-symmetric shedding of vortices in the wake of the flameholder. The flame is also forced using two different kinds of low-amplitude out-of-phase inlet velocity forcing signals. The first forcing method is harmonic forcing with a single characteristic frequency, while the second forcing method involves a broadband forcing signal with frequencies in the range of 500 - 1000 Hz. For the harmonic forcing method, the flame is perturbed only lightly about its mean position and exhibits a limit cycle oscillation that is characteristic of the forcing frequency. For the broadband forcing method, larger changes in the flame surface area and detachment of the flame sheet can be seen. Transition to a complicated trajectory in the phase space is observed. When analyzed systematically with system identification methods, the CFD results, expressed in the form of the Flame Transfer Function (FTF) are capable of elucidating the flame response to the imposed perturbation. The FTF also serves to identify, both spatially and temporally, regions where the flame responds linearly and nonlinearly. Locking-in between the flame's natural self-excited frequency and the subharmonic frequencies of the broadband forcing signal is found to alter the dynamical behaviour of the flame. Copyright © 2013 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present Random Partition Kernels, a new class of kernels derived by demonstrating a natural connection between random partitions of objects and kernels between those objects. We show how the construction can be used to create kernels from methods that would not normally be viewed as random partitions, such as Random Forest. To demonstrate the potential of this method, we propose two new kernels, the Random Forest Kernel and the Fast Cluster Kernel, and show that these kernels consistently outperform standard kernels on problems involving real-world datasets. Finally, we show how the form of these kernels lend themselves to a natural approximation that is appropriate for certain big data problems, allowing $O(N)$ inference in methods such as Gaussian Processes, Support Vector Machines and Kernel PCA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNS data of a laboratory-scale turbulent lifted hydrogen jet flame has been analyzed to show that this flame has mixed mode combustion not only at the flame base but also in downstream locations. The mixed mode combustion is observed in instantaneous structures as in earlier studies and in averaged structure, in which the predominant mode is found to be premixed combustion with varying equivalence ratio. The non-premixed combustion in the averaged structure is observed only in a narrow region at the edge of the jet shear layer. The analyzes of flame stretch show large probability for negative flame stretch leading to negative surface averaged flame stretch. The displacement speed-curvature correlation is observed to be negative contributing to the negative flame stretch and partial premixing resulting from jet entrainment acts to reduce the negative correlation. The contribution of turbulent straining to the flame stretch is observed to be negative when the scalar gradient aligns with the most extensive principal strain rate. The physics behind the negative flame stretch resulting from turbulent straining is discussed and elucidated through a simple analysis of the flame surface density transport equation. © 2014 Copyright Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flame surface density approach to the modeling of premixed turbulent combustion is well established in the context of Reynolds-averaged simulations. For the future, it is necessary to consider large-eddy simulation (LES), which is likely to offer major advantages in terms of physical accuracy, particularly for unsteady combustion problems. LES relies on spatial filtering for the removal of unresolved phenomena whose characteristic length scales are smaller than the computational grid scale. Thus, there is a need for soundly based physical modeling at the subgrid scales. The aim of this paper is to explore the usefulness of the flame surface density concept as a basis for LES modeling of premixed turbulent combustion. A transport equation for the filtered flame surface density is presented, and models are proposed for unclosed terms. Comparison with Reynolds-averaged modeling is shown to reveal some interesting similarities and differences. These were exploited together with known physics and statistical results from experiment and from direct numerical stimulation in order to gain insight and refine the modeling. The model has been implemented in a combustion LES code together with standard models for scalar and momentum transport. Computational results were obtained for a simple three-dimensional flame propagation test problem, and the relative importance of contributing terms in the modeled equation for flame surface density was assessed. Straining and curvature are shown to have a major influence at both the resolved and subgrid levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved. In piston engines and in gas turbines, the injection of liquid fuel often leads to the formation of a liquid film on the combustor wall. If a flame reaches this zone, undesired phenomena such as coking may occur and diminish the lifetime of the engine. Moreover, the effect of such an interaction on maximum wall heat fluxes, flame quenching, and pollutant formation is largely unknown. This paper presents a numerical study of the interaction of a premixed flame with a cold wall covered with a film of liquid fuel. Simulations show that the presence of the film leads to a very rich zone at the wall in which the flame cannot propagate. As a result, the flame wall distance remains larger with liquid fuel than it is for a dry wall, and maximum heat fluxes are smaller. The nature of the interaction of flame wall interaction with a liquid fuel is also different from the classical flame/dry wall interaction: it is controlled mainly by chemical mechanisms and not by the thermal quenching effect observed for flames interacting with dry walls: the existence of a very rich zone created above the liquid film is the main mechanism controlling quenching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brominated flame retardants (BFRs) and brominated dioxins are emerging persistent organic pollutants that are ubiquitous in the environment and can be accumulated by wildlife and humans. These chemicals can disturb endocrine function. Recent studies have demonstrated that one of the mechanisms of endocrine disruption by chemicals is modulation of steroidogenic gene expression or enzyme activities. In this study, an in vitro assay based on the H295R human adrenocortical carcinoma cell line, which possesses most key genes or enzymes involved in steroidogenesis, was used to examine the effects of five bromophenols, two polybrominated biphenyls (PBBs 77 and 169), 2,3,7,8-tetrabromodibenzo-p-dioxin, and 2,3,7,8-tetrabromodibenzofuran on the expression of 10 key steroidogenic genes. The H295R cells were exposed to various BFR concentrations for 48 h, and the expression of specific genescytochrome P450 (CYP11A, CYP11B2, CYP17, CYP19, and CYP21), 3 beta-hydroxysteroid dehydrogenase (3PHSD2), 17 beta-hydroxysteroid dehydrogenase (17 beta HSD1 and 17 beta HSD4), steroidogenic acute regulatory protein (StAR), and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR)-was quantitatively measured using real-time polymerase chain reaction. Cell viability was not affected at the doses tested. Most of the genes were either up- or down-regulated, to some extent, by BFR exposure. Among the genes tested, 3PHSD2 was the most markedly up-regulated, with a range of magnitude from 1.6- to 20-fold. The results demonstrate that bromophenol, bromobiphenyls, and bromodibenzo-p-dioxin/furan are able to modulate steroidogenic gene expression, which may lead to endocrine disruption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The on-way peak overpressure and flame propagation speed of gas deflagration in the tube with obstacles are important data for process safety. Based on carbon monoxide deflagration experiments, the paper presents a multi-zone integration model for calculation of on-way peak overpressure, in which the tube with obstacles is considered as a series of venting explosion enclosures which link each others. The analysis of experimental data indicates that the on-way peak overpressure of gas deflagration can be correlated as an empirical formula with equivalence ratio of carbon monoxide oxidation, expansion ratio, flame path length, etc., and that the on-way peak overpressure exhibits a linear relationship with turbulence factor and flame propagation speed. An empirical formula of flame propagation speed is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of organically modified montmorillonites (OMMTs) with different type and amount of modifiers on flame retardancy of polystyrene (PS) have been studied. The results from morphology analysis, gas chromatography-mass spectrometry and cone calorimeter have showed different mechanisms for the flame retardancy of PS/OMMTs composites, depending on surface property of OMNTrs. One is the catalysis of acid sites formed on the surface of octadecylammonium modified MMT (c-MMT) via Hoffman decomposition on the carbonization of degradation products, which promotes the formation of clay-enriched char barrier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of combination between a trace of halogenated compounds (such as ferric chloride and ammonium bromide) and Ni2O3 particles on the carbonization of polypropylene (PP) was investigated during combustion. The results showed a synergistic catalysis of combined halogenated compounds with Ni2O3 in promoting the formation of the residual char during combustion. The investigation on the promotion mechanism showed that halide radical releasing from halogen-containing additives worked as a catalyst to accelerate dehydrogenation-aromatization of degradation products of PR which promote the degradation products to form the residual char catalyzed by nickel catalyst.