842 resultados para farm accountancy data network


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stratigraphic Columns (SC) are the most useful and common ways to represent the eld descriptions (e.g., grain size, thickness of rock packages, and fossil and lithological components) of rock sequences and well logs. In these representations the width of SC vary according to the grain size (i.e., the wider the strata, the coarser the rocks (Miall 1990; Tucker 2011)), and the thickness of each layer is represented at the vertical axis of the diagram. Typically these representations are drawn 'manually' using vector graphic editors (e.g., Adobe Illustrator®, CorelDRAW®, Inskape). Nowadays there are various software which automatically plot SCs, but there are not versatile open-source tools and it is very di cult to both store and analyse stratigraphic information. This document presents Stratigraphic Data Analysis in R (SDAR), an analytical package1 designed for both plotting and facilitate the analysis of Stratigraphic Data in R (R Core Team 2014). SDAR, uses simple stratigraphic data and takes advantage of the exible plotting tools available in R to produce detailed SCs. The main bene ts of SDAR are: (i) used to generate accurate and complete SC plot including multiple features (e.g., sedimentary structures, samples, fossil content, color, structural data, contacts between beds), (ii) developed in a free software environment for statistical computing and graphics, (iii) run on a wide variety of platforms (i.e., UNIX, Windows, and MacOS), (iv) both plotting and analysing functions can be executed directly on R's command-line interface (CLI), consequently this feature enables users to integrate SDAR's functions with several others add-on packages available for R from The Comprehensive R Archive Network (CRAN).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Release of chloroethene compounds into the environment often results in groundwater contamination, which puts people at risk of exposure by drinking contaminated water. cDCE (cis-1,2-dichloroethene) accumulation on subsurface environments is a common environmental problem due to stagnation and partial degradation of other precursor chloroethene species. Polaromonas sp. strain JS666 apparently requires no exotic growth factors to be used as a bioaugmentation agent for aerobic cDCE degradation. Although being the only suitable microorganism found capable of such, further studies are needed for improving the intrinsic bioremediation rates and fully comprehend the metabolic processes involved. In order to do so, a metabolic model, iJS666, was reconstructed from genome annotation and available bibliographic data. FVA (Flux Variability Analysis) and FBA (Flux Balance Analysis) techniques were used to satisfactory validate the predictive capabilities of the iJS666 model. The iJS666 model was able to predict biomass growth for different previously tested conditions, allowed to design key experiments which should be done for further model improvement and, also, produced viable predictions for the use of biostimulant metabolites in the cDCE biodegradation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hospitals are nowadays collecting vast amounts of data related with patient records. All this data hold valuable knowledge that can be used to improve hospital decision making. Data mining techniques aim precisely at the extraction of useful knowledge from raw data. This work describes an implementation of a medical data mining project approach based on the CRISP-DM methodology. Recent real-world data, from 2000 to 2013, were collected from a Portuguese hospital and related with inpatient hospitalization. The goal was to predict generic hospital Length Of Stay based on indicators that are commonly available at the hospitalization process (e.g., gender, age, episode type, medical specialty). At the data preparation stage, the data were cleaned and variables were selected and transformed, leading to 14 inputs. Next, at the modeling stage, a regression approach was adopted, where six learning methods were compared: Average Prediction, Multiple Regression, Decision Tree, Artificial Neural Network ensemble, Support Vector Machine and Random Forest. The best learning model was obtained by the Random Forest method, which presents a high quality coefficient of determination value (0.81). This model was then opened by using a sensitivity analysis procedure that revealed three influential input attributes: the hospital episode type, the physical service where the patient is hospitalized and the associated medical specialty. Such extracted knowledge confirmed that the obtained predictive model is credible and with potential value for supporting decisions of hospital managers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PhD Thesis in Bioengineering

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thrombotic disorders have severe consequences for the patients and for the society in general, being one of the main causes of death. These facts reveal that it is extremely important to be preventive; being aware of how probable is to have that kind of syndrome. Indeed, this work will focus on the development of a decision support system that will cater for an individual risk evaluation with respect to the surge of thrombotic complaints. The Knowledge Representation and Reasoning procedures used will be based on an extension to the Logic Programming language, allowing the handling of incomplete and/or default data. The computational framework in place will be centered on Artificial Neural Networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nitrogen dioxide is a primary pollutant, regarded for the estimation of the air quality index, whose excessive presence may cause significant environmental and health problems. In the current work, we suggest characterizing the evolution of NO2 levels, by using geostatisti- cal approaches that deal with both the space and time coordinates. To develop our proposal, a first exploratory analysis was carried out on daily values of the target variable, daily measured in Portugal from 2004 to 2012, which led to identify three influential covariates (type of site, environment and month of measurement). In a second step, appropriate geostatistical tools were applied to model the trend and the space-time variability, thus enabling us to use the kriging techniques for prediction, without requiring data from a dense monitoring network. This method- ology has valuable applications, as it can provide accurate assessment of the nitrogen dioxide concentrations at sites where either data have been lost or there is no monitoring station nearby.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, the quality of the Indonesian national road network is inadequate due to several constraints, including overcapacity and overloaded trucks. The high deterioration rate of the road infrastructure in developing countries along with major budgetary restrictions and high growth in traffic have led to an emerging need for improving the performance of the highway maintenance system. However, the high number of intervening factors and their complex effects require advanced tools to successfully solve this problem. The high learning capabilities of Data Mining (DM) are a powerful solution to this problem. In the past, these tools have been successfully applied to solve complex and multi-dimensional problems in various scientific fields. Therefore, it is expected that DM can be used to analyze the large amount of data regarding the pavement and traffic, identify the relationship between variables, and provide information regarding the prediction of the data. In this paper, we present a new approach to predict the International Roughness Index (IRI) of pavement based on DM techniques. DM was used to analyze the initial IRI data, including age, Equivalent Single Axle Load (ESAL), crack, potholes, rutting, and long cracks. This model was developed and verified using data from an Integrated Indonesia Road Management System (IIRMS) that was measured with the National Association of Australian State Road Authorities (NAASRA) roughness meter. The results of the proposed approach are compared with the IIRMS analytical model adapted to the IRI, and the advantages of the new approach are highlighted. We show that the novel data-driven model is able to learn (with high accuracy) the complex relationships between the IRI and the contributing factors of overloaded trucks

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed data aggregation is an important task, allowing the de- centralized determination of meaningful global properties, that can then be used to direct the execution of other applications. The resulting val- ues result from the distributed computation of functions like count, sum and average. Some application examples can found to determine the network size, total storage capacity, average load, majorities and many others. In the last decade, many di erent approaches have been pro- posed, with di erent trade-o s in terms of accuracy, reliability, message and time complexity. Due to the considerable amount and variety of ag- gregation algorithms, it can be di cult and time consuming to determine which techniques will be more appropriate to use in speci c settings, jus- tifying the existence of a survey to aid in this task. This work reviews the state of the art on distributed data aggregation algorithms, providing three main contributions. First, it formally de nes the concept of aggrega- tion, characterizing the di erent types of aggregation functions. Second, it succinctly describes the main aggregation techniques, organizing them in a taxonomy. Finally, it provides some guidelines toward the selection and use of the most relevant techniques, summarizing their principal characteristics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de Mestrado (Programa Doutoral em Informática)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The data acquisition process in real-time is fundamental to provide appropriate services and improve health professionals decision. In this paper a pervasive adaptive data acquisition architecture of medical devices (e.g. vital signs, ventilators and sensors) is presented. The architecture was deployed in a real context in an Intensive Care Unit. It is providing clinical data in real-time to the INTCare system. The gateway is composed by several agents able to collect a set of patients’ variables (vital signs, ventilation) across the network. The paper shows as example the ventilation acquisition process. The clients are installed in a machine near the patient bed. Then they are connected to the ventilators and the data monitored is sent to a multithreading server which using Health Level Seven protocols records the data in the database. The agents associated to gateway are able to collect, analyse, interpret and store the data in the repository. This gateway is composed by a fault tolerant system that ensures a data store in the database even if the agents are disconnected. The gateway is pervasive, universal, and interoperable and it is able to adapt to any service using streaming data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper devotes to evaluation of performance bottlenecks and algorithm deficiencies in the area of contemporary reliable multicast networking. Hereby, the impact of packet delay jitter on the end-to-end performance of multicast IP data transport is investigated. A series of tests with two most significant open-source implementations of reliable multicast is performed and analyzed. These are: UDP-based File Transfer Protocol (UFTP) and NACK-oriented Reliable multicast (NORM). Tests were targeted to simulate scenario of content distribution in WAN – sized Content Delivery Networks (CDN). Then, results were grouped and averaged, by round trip time and packet losses. This enabled us to see jitter influence independently on round trip time(RTT) and packet loss rates. Revealed jitter influence for different network conditions. Confirmed, that appearance of even small jitter causes significant data rate reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is dedicated to comparison of open source as well as proprietary transport protocols for highspeed data transmission via IP networks. The contemporary common TCP needs significant improvement since it was developed as general-purpose transport protocol and firstly introduced four decades ago. In nowadays networks, TCP fits not all communication needs that society has. Caused of it another transport protocols have been developed and successfully used for e.g. Big Data movement. In scope of this research the following protocols have been investigated for its efficiency on 10Gbps links: UDT, RBUDP, MTP and RWTP. The protocols were tested under different impairments such as Round Trip Time up to 400 ms and packet losses up to 2%. Investigated parameters are the data rate under different conditions of the network, the CPU load by sender andreceiver during the experiments, size of feedback data, CPU usage per Gbps and the amount of feedback data per GiByte of effectively transmitted data. The best performance and fair resources consumption was observed by RWTP. From the opensource projects, the best behavior is showed by RBUDP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of Geographic Information Systems has revolutionalized the handling and the visualization of geo-referenced data and has underlined the critic role of spatial analysis. The usual tools for such a purpose are geostatistics which are widely used in Earth science. Geostatistics are based upon several hypothesis which are not always verified in practice. On the other hand, Artificial Neural Network (ANN) a priori can be used without special assumptions and are known to be flexible. This paper proposes to discuss the application of ANN in the case of the interpolation of a geo-referenced variable.