860 resultados para ethylene-propylene terpolymer (EPDM)
Resumo:
Polygalacturonase (PG) is the major enzyme responsible for pectin disassembly in ripening fruit. Despite extensive research on the factors regulating PG gene expression in fruit, there is conflicting evidence regarding the role of ethylene in mediating its expression. Transgenic tomato (Lycopersicon esculentum) fruits in which endogenous ethylene production was suppressed by the expression of an antisense 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene were used to re-examine the role of ethylene in regulating the accumulation of PG mRNA, enzyme activity, and protein during fruit ripening. Treatment of transgenic antisense ACC synthase mature green fruit with ethylene at concentrations as low as 0.1 to 1 μL/L for 24 h induced PG mRNA accumulation, and this accumulation was higher at concentrations of ethylene up to 100 μL/L. Neither PG enzyme activity nor PG protein accumulated during this 24-h period of ethylene treatment, indicating that translation lags at least 24 h behind the accumulation of PG mRNA, even at high ethylene concentrations. When examined at concentrations of 10 μL/L, PG mRNA accumulated within 6 h of ethylene treatment, indicating that the PG gene responds rapidly to ethylene. Treatment of transgenic tomato fruit with a low level of ethylene (0.1 μL/L) for up to 6 d induced levels of PG mRNA, enzyme activity, and protein after 6 d, which were comparable to levels observed in ripening wild-type fruit. A similar level of internal ethylene (0.15 μL/L) was measured in transgenic antisense ACC synthase fruit that were held for 28 d after harvest. In these fruit PG mRNA, enzyme activity, and protein were detected. Collectively, these results suggest that PG mRNA accumulation is ethylene regulated, and that the low threshold levels of ethylene required to promote PG mRNA accumulation may be exceeded, even in transgenic antisense ACC synthase tomato fruit.
Resumo:
The sorghum (Sorghum bicolor L. Moench) cultivar 58M, which contains the null mutant phytochrome B gene, shows reduced photoperiodic sensitivity and exhibits a shade-avoidance phenotype. Ethylene production by seedlings of wild-type and phytochrome B mutant cultivars was monitored every 3 h, and both cultivars were found to produce ethylene in a circadian rhythm, with peak production occurring during the day. The phytochrome B mutant produces rhythmic peaks of ethylene with approximately 10 times the amplitude of the wild-type counterpart with the same period and diurnal timing. The source of the mutant's additional ethylene is the shoot. The diurnal rhythm can be produced with either light or temperature cycles; however, both light and temperature cycles are required for circadian entrainment. The temperature signal overrides the light signal in the production of diurnal rhythms, because seedlings grown under thermoperiods reversed with the photoperiod produced ethylene peaks during the warm nights. To examine the effect of extreme shading on ethylene production, seedlings were grown under dim, far-red-enriched light. This treatment duplicated the phytochrome B mutant's shade-avoidance phenotype in the wild type and caused the wild type to produce ethylene peaks similar to those observed in the mutant. The results confirm that phytochrome B is not required for proper function of circadian timing, but it may be involved in modulating physiological rhythms driven by the biological clock oscillator.
Resumo:
Glucose (Glc) starvation of suspension-cultured carrot (Daucus carota L.) cells resulted in sequential activation of phospholipid catabolic enzymes. Among the assayed enzymes involved in the degradation, phospholipase D (PLD) and lipolytic acyl hydrolase were activated at the early part of starvation, and these activities were followed by β-oxidation and the glyoxylate cycle enzymes in order. The activity of PLD and lipolytic acyl hydrolase was further confirmed by in vivo-labeling experiments. It was demonstrated that Glc added to a medium containing starving cells inhibited the phospholipid catabolic activities, indicating that phospholipid catabolism is negatively regulated by Glc. There was a burst of ethylene production 6 h after starvation. Ethylene added exogeneously to a Glc-sufficient medium activated PLD, indicating that ethylene acts as an element in the signal transduction pathway leading from Glc depletion to PLD activation. Activation of lipid peroxidation, suggestive of cell death, occurred immediately after the decrease of the phospholipid degradation, suggesting that the observed phospholipid catabolic pathway is part of the metabolic strategies by which cells effectively survive under Glc starvation.
Resumo:
The reaction of the old yellow enzyme and reduced flavins with organic nitrate esters has been studied. Reduced flavins have been found to react readily with glycerin trinitrate (GTN ) (nitroglycerin) and propylene dinitrate, with rate constants at pH 7.0, 25°C of 145 M−1s−1 and 5.8 M−1s−1, respectively. With GTN, the secondary nitrate was removed reductively 6 times faster than the primary nitrate, with liberation of nitrite. With propylene dinitrate, on the other hand, the primary nitrate residue was 3 times more reactive than the secondary residue. In the old yellow enzyme-catalyzed NADPH-dependent reduction of GTN and propylene dinitrate, ping-pong kinetics are displayed, as found for all other substrates of the enzyme. Rapid-reaction studies of mixing reduced enzyme with the nitrate esters show that a reduced enzyme–substrate complex is formed before oxidation of the reduced flavin. The rate constants for these reactions and the apparent Kd values of the enzyme–substrate complexes have been determined and reveal that the rate-limiting step in catalysis is reduction of the enzyme by NADPH. Analysis of the products reveal that with the enzyme-catalyzed reactions, reduction of the primary nitrate in both GTN and propylene dinitrate is favored by comparison with the free-flavin reactions. This preferential positional reactivity can be rationalized by modeling of the substrates into the known crystal structure of the enzyme. In contrast to the facile reaction of free reduced flavins with GTN, reduced 5-deazaflavins have been found to react some 4–5 orders of magnitude slower. This finding implies that the chemical mechanism of the reaction is one involving radical transfers.
Resumo:
The simple gas ethylene affects numerous physiological processes in the growth and development of higher plants. With the use of molecular genetic approaches, we are beginning to learn how plants perceive ethylene and how this signal is transduced. Components of ethylene signal transduction are defined by ethylene response mutants in Arabidopsis thaliana. The genes corresponding to two of these mutants, etr1 and etr1, have been cloned. The ETR1 gene encodes a homolog of two-component regulators that are known almost exclusively in prokaryotes. The two-component regulators in prokaryotes are involved in the perception and transduction of a wide range of environmental signals leading to adaptive responses. The CTR1 gene encodes a homolog of the Raf family of serine/threonine protein kinases. Raf is part of a mitogen-activated protein kinase cascade known to regulate cell growth and development in mammals, worms, and flies. The ethylene response pathway may, therefore, exemplify a conserved protein kinase cascade regulated by a two-component system. The dominance of all known mutant alleles of ETR1 may be due to either constitutive activation of the ETR1 protein or dominant interference of wild-type activity. The discovery of Arabidopsis genes encoding proteins related to ETR1 suggests that the failure to recover recessive etr1 mutant alleles may be due to the presence of redundant genes.
Resumo:
A complete study of the importance of the pyrolysis temperature (up to 1500 °C) of a petroleum residue (ethylene tar) in the activation with KOH of the resultant pyrolysis products (covering from the own ethylene tar to pitches and well developed cokes) has been carried out. The trend in the porosity found for activated carbons is as follows: the pore volume increases with the pyrolysis temperature reaching a maximum value (1.39 cm3/g) at about 460 °C, just at the transition temperature between a fluid pitch and a solid coke. It is the pitch with highest mesophase content that develops the maximum porosity when activated with KOH. The amount of H2, CO and CO2 produced during the reaction of the mesophase pitch and coke with KOH has been quantified, and a trend as described for the pore volume was found with the pyrolysis temperature. Therefore, there is a relationship between the reactivity of the precursor with KOH and the porosity developed by the activated carbon. Since the reactions that produce H2 initiate at temperatures as low as 300 °C, it seems that KOH is modifying the conditions under which the pyrolysis occurs, and this fact is critical in the development of porosity.
Resumo:
In this study, a new type of nanopigment, obtained from a nanoclay (NC) and a dye, was synthesized in the laboratory, and these nanopigments were used to color an ethylene vinyl acetate (EVA) copolymer. Several of these nanoclay-based pigments (NCPs) were obtained through variations in the cation exchange capacity (CEC) percentage of the NC exchanged with the dye and also including an ammonium salt. Composites of EVA and different amounts of the as-synthesized nanopigments were prepared in a melt-intercalation process. Then, the morphological, mechanical, thermal, rheological, and colorimetric properties of the samples were assessed. The EVA/NCP composites developed much better color properties than the samples containing only the dye, especially when both the dye and the ammonium salt were exchanged with NC. Their other properties were similar to those of more conventional EVA/NC composites.
Resumo:
Spin-projected spin polarized Møller–Plesset and spin polarized coupled clusters calculations have been made to estimate the cyclobutadiene automerization, the ethylene torsion barriers in their ground state, and the gap between the singlet and triplet states of ethylene. The results have been obtained optimizing the geometries at MP4 and/or CCSD levels, by an extensive Gaussian basis set. A comparative analysis with more complex calculations, up to MP5 and CCSDTQP, together with others from the literature, have also been made, showing the efficacy of using spin-polarized wave functions as a reference wave function for Møller–Plesset and coupled clusters calculations, in such problems.
Resumo:
Pd nanoparticles have been synthesized over carbon nanotubes (CNT) and graphite oxide (GO) by reduction with ethylene glycol and by conventional impregnation method. The catalysts were tested on the chemoselective hydrogenation of p-chloronitrobenzene and the effect of the synthesis method and surface chemistry on their catalytic performance was evaluated. The catalysts were characterized by N2 adsorption/desorption isotherms at 77 K, TEM, powder X-ray diffraction, thermogravimetry, infrared and X-ray photoelectron spectroscopy and ICP-OES. It was observed that the synthesis of Pd nanoparticles employing ethylene glycol resulted in metallic palladium particles of smaller size compared to those prepared by the impregnation method and similar for both supports. The presence of oxygen groups on the support surface favored the activity and diminished the selectivity. It seems that ethylene glycol reacted with the surface groups of GO, this favoring the selectivity. The activity was higher over the CNT-based catalysts and both catalysts prepared by reduction in ethylene glycol were quite stable upon recycling.
Resumo:
Carbon and graphene-based materials often show some amount of pseudocapacitance due to their oxygen-functional groups. However, such pseudocapacitance is generally negligible in organic electrolytes and has not attracted much attention. In this work, we report a large pseudocapacitance of zeolite-templated carbon (ZTC) based on the oxygen-functional groups in 1 M tetraethylammonium tetrafluoroborate dissolved in propylene carbonate (Et4NBF4/PC). Due to its significant amount of active edge sites, a large amount of redox-active oxygen functional groups are introduced into ZTC, and ZTC shows a high specific capacitance (330 F g−1). Experimental results suggest that the pseudocapacitance could be based on the formation of anion and cation radicals of quinones and ethers, respectively. Moreover, ZTC shows pseudocapacitance also in 1 M lithium hexafluorophosphate dissolved with a mixture of ethylene carbonate and diethyl carbonate (LiPF6/EC+DEC) which is used for lithium-ion batteries and lithium-ion capacitors.
Resumo:
Mode of access: Internet.
Resumo:
"Grant No. S-802934."
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Item 231-B-1.