863 resultados para energy-cost
Resumo:
Formic acid, the simplest carboxylic acid, is found in nature or can be easily synthesized in the laboratory (major by-product of some second generation biorefinery processes); it is also an important chemical due to its myriad applications in pharmaceuticals and industry. In recent years, formic acid has been used as an important fuel either without reformation (in direct formic acid fuel cells, DFAFCs) or with reformation (as a potential chemical hydrogen storage material). Owing to the better efficiency of DFAFCs compared to several other PEMFCs and reversible hydrogen storage systems, formic acid could serve as one of the better fuels for portable devices, vehicles and other energy-related applications in the future. This perspective is focused on recent developments in the use of formic acid as a reversible source for hydrogen storage. Recent developments in this direction will likely give access to a variety of low-cost and highly efficient rechargeable hydrogen fuel cells within the next few years by the use of suitable homogeneous metal complex/heterogeneous metal nanoparticle-based catalysts under ambient reaction conditions. The production of formic acid from atmospheric CO2 (a greenhouse gas) will decrease the CO2 content and may be helpful in reducing global warming.
Resumo:
This paper evaluates cost and performance tradeoffs of alternative supercritical carbon dioxide (s-CO2) closed-loop Brayton cycle configurations with a concentrated solar heat source. Alternative s-CO2 power cycle configurations include simple, recompression, cascaded, and partial cooling cycles. Results show that the simple closed-loop Brayton cycle yielded the lowest power-block component costs while allowing variable temperature differentials across the s-CO2 heating source, depending on the level of recuperation. Lower temperature differentials led to higher sensible storage costs, but cycle configurations with lower temperature differentials (higher recuperation) yielded higher cycle efficiencies and lower solar collector and receiver costs. The cycles with higher efficiencies (simple recuperated, recompression, and partial cooling) yielded the lowest overall solar and power-block component costs for a prescribed power output.
Resumo:
Climate change is an important environmental problem and one whose economic implications are many and varied. This paper starts with the presumption that mitigation of greenhouse gases is a necessary policy that has to be designed in a cost effective way. It is well known that market instruments are the best option for cost effectiveness. But the discussion regarding which of the various market instruments should be used, how they may interact and what combinations of policies should be implemented is still open and very lively. In this paper we propose a combination of instruments: the marketable emission permits already in place in Europe for major economic sectors and a CO(2) tax for economic sectors not included in the emissions permit scheme. The study uses an applied general equilibrium model for the Spanish economy to compute the results obtained with the new mix of instruments proposed. As the combination of the market for emission permits and the CO(2) tax admits different possibilities that depend on how the mitigation is distributed among the economic sectors, we concentrate on four possibilities: cost-effective, equalitarian, proportional to emissions, and proportional to output distributions. Other alternatives to the CO(2) tax are also analysed (tax on energy, on oil and on electricity). Our findings suggest that careful, well designed policies are needed as any deviation imposes significant additional costs that increase more than proportionally to the level of emissions reduction targeted by the EU.
Resumo:
This study, though, has as its core objective cost reduction in aquaculture nutrition was equally designed to investigate the value of the peels of cassava (Manihot utillisima) as energy source in the diet of Oreochromis niloticus fry. Three levels of cassava peels diet and a control (100% yellow maize in the carbohydrate mixture) was prepared and tested on O. niloticus fry for ten (10) weeks. The fry with mean weight of 0.32g were grouped fifteen (15) in each of the glass aquaria measuring 60x30x30cm with a maximum capacity of 52 litres of water. The fry were fed twice daily at 10% biomass. Weekly, the fry were weighed to determine the weight increment or otherwise and the quality of feed adjusted accordingly. Water quality parameters like temperature, pH and dissolved oxygen (D.0) were monitored and found to be at desirable level. DT 3 (97 % cassava peels and 3% yellow maize) in the carbohydrate mixture gave the best growth performance. The fry fed, this diet gained mean weight of 1.18g for the period of the experiment. However, the poorest performance in terms of growth was from fry fed the control diet (100%yellow maize in the carbohydrate mixture) fry fed this diet gained mean weight of 0.80 for the duration of the experiment. Analysis of the various growth indices like SGR, PER, FCR and NPU shows that DT3 was the overall best diet with an SGR value of2.40 and FCR of 43.83. However, DT 1 (70% cassava peels and 30% yellow maize) gave the poorest SGR of 1.61 and FCR of 67.58. The difference in weight gain among the fry fed the three levels of cassava peels diet and the control was not statically significant (P>0.05)
Resumo:
Future fossil fuel scarcity and environmental degradation have demonstrated the need for renewable, low-carbon sources of energy to power an increasingly industrialized world. Solar energy with its infinite supply makes it an extraordinary resource that should not go unused. However with current materials, adoption is limited by cost and so a paradigm shift must occur to get everyone on the same page embracing solar technology. Cuprous Oxide (Cu2O) is a promising earth abundant material that can be a great alternative to traditional thin-film photovoltaic materials like CIGS, CdTe, etc. We have prepared Cu2O bulk substrates by the thermal oxidation of copper foils as well Cu2O thin films deposited via plasma-assisted Molecular Beam Epitaxy. From preliminary Hall measurements it was determined that Cu2O would need to be doped extrinsically. This was further confirmed by simulations of ZnO/Cu2O heterojunctions. A cyclic interdependence between, defect concentration, minority carrier lifetime, film thickness, and carrier concentration manifests itself a primary reason for why efficiencies greater than 4% has yet to be realized. Our growth methodology for our thin-film heterostructures allow precise control of the number of defects that incorporate into our film during both equilibrium and nonequilibrium growth. We also report process flow/device design/fabrication techniques in order to create a device. A typical device without any optimizations exhibited open-circuit voltages Voc, values in excess 500mV; nearly 18% greater than previous solid state devices.
Resumo:
One of the critical problems currently being faced by agriculture industry in developing nations is the alarming rate of groundwater depletion. Irrigation accounts for over 70% of the total groundwater withdrawn everyday. Compounding this issue is the use of polluting diesel generators to pump groundwater for irrigation. This has made irrigation not only the biggest consumer of groundwater but also one of the major contributors to green house gases. The aim of this thesis is to present a solution to the energy-water nexus. To make agriculture less dependent on fossil fuels, the use of a solar-powered Stirling engine as the power generator for on-farm energy needs is discussed. The Stirling cycle is revisited and practical and ideal Stirling cycles are compared. Based on agricultural needs and financial constraints faced by farmers in developing countries, the use of a Fresnel lens as a solar-concentrator and a Beta-type Stirling engine unit is suggested for sustainable power generation on the farms. To reduce the groundwater consumption and to make irrigation more sustainable, the conceptual idea of using a Stirling engine in drip irrigation is presented. To tackle the shortage of over 37 million tonnes of cold-storage in India, the idea of cost-effective solar-powered on-farm cold storage unit is discussed.
Resumo:
Chapter I
Theories for organic donor-acceptor (DA) complexes in solution and in the solid state are reviewed, and compared with the available experimental data. As shown by McConnell et al. (Proc. Natl. Acad. Sci. U.S., 53, 46-50 (1965)), the DA crystals fall into two classes, the holoionic class with a fully or almost fully ionic ground state, and the nonionic class with little or no ionic character. If the total lattice binding energy 2ε1 (per DA pair) gained in ionizing a DA lattice exceeds the cost 2εo of ionizing each DA pair, ε1 + εo less than 0, then the lattice is holoionic. The charge-transfer (CT) band in crystals and in solution can be explained, following Mulliken, by a second-order mixing of states, or by any theory that makes the CT transition strongly allowed, and yet due to a small change in the ground state of the non-interacting components D and A (or D+ and A-). The magnetic properties of the DA crystals are discussed.
Chapter II
A computer program, EWALD, was written to calculate by the Ewald fast-convergence method the crystal Coulomb binding energy EC due to classical monopole-monopole interactions for crystals of any symmetry. The precision of EC values obtained is high: the uncertainties, estimated by the effect on EC of changing the Ewald convergence parameter η, ranged from ± 0.00002 eV to ± 0.01 eV in the worst case. The charge distribution for organic ions was idealized as fractional point charges localized at the crystallographic atomic positions: these charges were chosen from available theoretical and experimental estimates. The uncertainty in EC due to different charge distribution models is typically ± 0.1 eV (± 3%): thus, even the simple Hückel model can give decent results.
EC for Wurster's Blue Perchl orate is -4.1 eV/molecule: the crystal is stable under the binding provided by direct Coulomb interactions. EC for N-Methylphenazinium Tetracyanoquino- dimethanide is 0.1 eV: exchange Coulomb interactions, which cannot be estimated classically, must provide the necessary binding.
EWALD was also used to test the McConnell classification of DA crystals. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine: 7,7,8,8-Tetracyanoquinodimethan) EC = -4.0 eV while 2εo = 4.65 eV: clearly, exchange forces must provide the balance. For the holoionic (1:1)-(N,N,N',N'-Tetramethyl-para- phenylenediamine:para-Chloranil) EC = -4.4 eV, while 2εo = 5.0 eV: again EC falls short of 2ε1. As a Gedankenexperiment, two nonionic crystals were assumed to be ionized: for (1:1)-(Hexamethyl- benzene:para-Chloranil) EC = -4.5 eV, 2εo = 6.6 eV; for (1:1)- (Napthalene:Tetracyanoethylene) EC = -4.3 eV, 2εo = 6.5 eV. Thus, exchange energies in these nonionic crystals must not exceed 1 eV.
Chapter III
A rapid-convergence quantum-mechanical formalism is derived to calculate the electronic energy of an arbitrary molecular (or molecular-ion) crystal: this provides estimates of crystal binding energies which include the exchange Coulomb inter- actions. Previously obtained LCAO-MO wavefunctions for the isolated molecule(s) ("unit cell spin-orbitals") provide the starting-point. Bloch's theorem is used to construct "crystal spin-orbitals". Overlap between the unit cell orbitals localized in different unit cells is neglected, or is eliminated by Löwdin orthogonalization. Then simple formulas for the total kinetic energy Q^(XT)_λ, nuclear attraction [λ/λ]XT, direct Coulomb [λλ/λ'λ']XT and exchange Coulomb [λλ'/λ'λ]XT integrals are obtained, and direct-space brute-force expansions in atomic wavefunctions are given. Fourier series are obtained for [λ/λ]XT, [λλ/λ'λ']XT, and [λλ/λ'λ]XT with the help of the convolution theorem; the Fourier coefficients require the evaluation of Silverstone's two-center Fourier transform integrals. If the short-range interactions are calculated by brute-force integrations in direct space, and the long-range effects are summed in Fourier space, then rapid convergence is possible for [λ/λ]XT, [λλ/λ'λ']XT and [λλ'/λ'λ]XT. This is achieved, as in the Ewald method, by modifying each atomic wavefunction by a "Gaussian convergence acceleration factor", and evaluating separately in direct and in Fourier space appropriate portions of [λ/λ]XT, etc., where some of the portions contain the Gaussian factor.
Resumo:
4 p.
Resumo:
4 p.
Resumo:
41 p.
Resumo:
29 p.
Resumo:
21 p.
Resumo:
In this paper, a real time sliding mode control scheme for a variable speed wind turbine that incorporates a doubly feed induction generator is described. In this design, the so-called vector control theory is applied, in order to simplify the system electrical equations. The proposed control scheme involves a low computational cost and therefore can be implemented in real-time applications using a low cost Digital Signal Processor (DSP). The stability analysis of the proposed sliding mode controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. A new experimental platform has been designed and constructed in order to analyze the real-time performance of the proposed controller in a real system. Finally, the experimental validation carried out in the experimental platform shows; on the one hand that the proposed controller provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to the uncertainties that usually appear in the real systems.
Resumo:
It has long been known that neurons in the brain are not physiologically homogeneous. In response to current stimulus, they can fire several distinct patterns of action potentials that are associated with different physiological classes ranging from regular-spiking cells, fast-spiking cells, intrinsically bursting cells, and low-threshold cells. In this work we show that the high degree of variability in firing characteristics of action potentials among these cells is accompanied with a significant variability in the energy demands required to restore the concentration gradients after an action potential. The values of the metabolic energy were calculated for a wide range of cell temperatures and stimulus intensities following two different approaches. The first one is based on the amount of Na+ load crossing the membrane during a single action potential, while the second one focuses on the electrochemical energy functions deduced from the dynamics of the computational neuron models. The results show that the thalamocortical relay neuron is the most energy-efficient cell consuming between 7 and 18 nJ/cm(2) for each spike generated, while both the regular and fast spiking cells from somatosensory cortex and the intrinsically-bursting cell from a cat visual cortex are the least energy-efficient, and can consume up to 100 nJ/cm(2) per spike. The lowest values of these energy demands were achieved at higher temperatures and high external stimuli.
Resumo:
There is potential to extract energy from wastewater in a number of ways, including: kinetic energy using micro-hydro systems, chemical energy through the incineration of sludge, biomass energy from the biogas produced after anaerobic sludge digestion, and thermal energy as heat. This paper considers the last option and asks how much heat could be recovered under UK climatic conditions and can this heat be used effectively by wastewater treatment plants to reduce their carbon footprint? Four wastewater treatment sites in southern England are investigated and the available heat that can be recovered at those sites is quantified. Issues relating to the environmental, economic and practical constraints on how energy can be realistically recovered and utilised are discussed .The results show there is a definite possibility for thermal energy recovery with potential savings at some sites of up to 35,000 tonnes of total long-cycle carbon equivalent (fossil fuel) emissions per year being achievable. The paper also shows that the financial feasibility of three options for using the heat (either for district heating, sludge drying or thermophilic heating in sludge digestion processes) is highly dependant upon the current shadow price of carbon. Without the inclusion of the cost of carbon, the financial feasibility is significantly limited. An environmental constraint for the allowable discharge temperature of effluent after heat-extraction was found to be the major limitation to the amount of energy available for recovery. The paper establishes the true potential of thermal energy recovery from wastewater in English conditions and the economic feasibility of reducing the carbon footprint of wastewater treatment operations using this approach.