935 resultados para elephant-grass
Resumo:
On-farm biogas production is typically associated with forage maize as the biomass source. Digesters are designed and operated with the focus of optimising the conditions for this feedstock. Thus, such systems may not be ideally suited to the digestion of grass. Ireland has ca. 3.85 million ha of grassland. Annual excess grass, surplus to livestock requirements, could potentially fuel an anaerobic digestion industry. Biomethane associated with biomass from 1.1 % of grassland in Ireland, could potentially generate over 10 % renewable energy supply in transport. This study aims to identify and optimise technologies for the production of biomethane from grass silage. Mono-digestion of grass silage and co-digestion with slurry, as would occur on Irish farms, is investigated in laboratory trials. Grass silage was shown to have 7 times greater methane potential than dairy slurry on a fresh weight basis (107 m3 t-1 v 16 m3 t-1). However, comprehensive trace element profiles indicated that cobalt, iron and nickel are deficient in mono-digestion of grass silage at a high organic loading rate (OLR) of 4.0 kg VS m-3 d-1. The addition of a slurry co-substrate was beneficial due to its wealth of essential trace elements. To stimulate hydrolysis of high lignocellulose grass silage, particle size reduction (physical) and rumen fluid addition (biological) were investigated. In a continuous trial, digestion of grass silage of <1 cm particle size achieved a specific methane yield of 371 L CH4 kg-1 VS when coupled with rumen fluid addition. The concept of demand driven biogas was also examined in a two-phase digestion system (leaching with UASB). When demand for electricity is low it is recommended to disconnect the UASB from the system and recirculate rumen fluid to increase volatile fatty acid (VFA) and soluble chemical oxygen demand (SCOD) production whilst minimising volatile solids (VS) destruction. At times of high demand for electricity, connection of the UASB increases the destruction of volatiles and associated biogas production. The above experiments are intended to assess a range of biogas production options from grass silage with a specific focus on maximising methane yields and provide a guideline for feasible design and operation of on-farm digesters in Ireland.
Resumo:
p.43-55
Resumo:
p.43-55
Resumo:
p.107-120
Resumo:
1. Free-living animals make complex decisions associated with optimizing energy and nutrient intake. In environments where ambient temperatures fall below the thermoneutral zone, homeotherms must choose whether or not to forage, how long and what to forage for, and whether or not to perform activities that conserve energy.
Resumo:
This experiment investigated the effects of providing access to grass silage on the welfare of sows introduced to a large dynamic group. Two treatments were applied: (1) access to racks containing grass silage (offering an average of 1.9 kg silage/sow/day), and (2) control treatment with no grass silage racks. Treatments 1 and 2 were applied to two separate dynamic groups, each containing 37 (2) sows. Approximately 9 sows were replaced in both groups at 3-week intervals, and each of these replacements constituted a replicate of the study. The study was replicated six times using a total of 108 sows. In a time-based cross-over design, treatments were swapped between the two dynamic groups after three replicates. Highest levels of rack usage were shown between 08:00 and 14:00 h. During peak periods, 9.8% of sows were observed at the racks at a given time. On average, 78.5% of sows observed at the racks were newly-introduced animals. Overall levels of aggression to which newly-introduced sows were exposed on the day of introduction to the group were low, and did not differ significantly between treatments (P > 0.05). In addition, injury levels measured 1-week post-introduction to the group did not differ significantly between treatments (P > 0.05). Sham chewing behaviour was more prevalent in the post-rather than the pre-feeding yard (P
Resumo:
Red meat from grass-fed animals, compared with concentrate-fed animals, contains increased concentrations of long-chain (LC) n-3 PUPA. However, the effects of red meat consumption from grass-fed animals on consumer blood concentrations of LC n-3 PUFA are unknown. The aim of the present study was to compare the effects on plasma and platelet LC n-3 PUFA status of consuming red meat produced from either grass-fed animals or concentrate-fed animals. A randomised, double-blinded, dietary intervention study was carried out for 4 weeks on healthy subjects who replaced their habitual red meat intake with three portions per week of red meat (beef and lamb) from animals offered a finishing diet of either grass or concentrate (n 20 consumers). Plasma and platelet fatty acid composition, dietary intake, blood pressure, and serum lipids and lipoproteins were analysed at baseline and post-intervention. Dietary intakes of total n-3 PUFA, as well as plasma and platelet concentrations of LC n-3 PUFA, were significantly higher in those subjects who consumed red meat from grass-fed animals compared with those who consumed red meat from concentrate-fed animals (P<0.05). No significant differences in concentrations of serum cholesterol, TAG or blood pressure were observed between groups. Consuming red meat from grass-fed animals compared with concentrate-fed animals as part of the habitual diet can significantly increase consumer plasma and platelet LC n-3 PUFA status. As a result, red meat from grass-fed animals may contribute to dietary intakes of LC n-3 PUFA in populations where red meat is habitually consumed.