989 resultados para electronic documents
Resumo:
Public submission # 029 to a Australian federal parliamentary committee considering proposed legislative changes to the Commonwealth's Healthcare Identifiers Act 2010 and the Personally Controlled Electronic Health Records Act 2012.
Development of multi-rotor localised surveillance using multi-spectral sensors for plant biosecurity
Resumo:
This report describes a proof of concept for multi-rotor localised surveillance using a multi-spectral sensor for plant biosecurity applications. A literature review was conducted on previous applications using airborne multispectral imaging for plant biosecurity purposes. A ready built platform was purchased and modified in order to fit and provide suitable clearance for a Tetracam Mini-MCA multispectral camera. The appropriate risk management documents were developed allowing the platform and the multi-spectral camera to be tested extensively. However, due to technical difficulties with the platform the Mini- MCA was not mounted to the platform. Once a suitable platform is developed, future extensions can be conducted into the suitability of the Mini-MCA for airborne surveillance of Australian crops.
Resumo:
Approximate calculations are reported on pyrene within the PPP model Hamiltonian using a novel restricted CI scheme which employs both molecular orbital and valence bond techniques. Also reported are detailed full CI results of the PPP model on 2,7-dihydropyrene obtained using the valence bond method. Spectral studies, charge and spin density calculations in ground and excited states, and ring current calculations in the ground state of the molecules are presented. In pyrene, the calculated excitation energies are in good agreement with experiment. The closed structure pi-conjugated molecule pyrene appears to show smaller distortions from the ground state geometry compared with the open structure pi-conjugated molecule 2,7-dihydropyrene. The ground state equilibrium structure of 2,7-dihydropyrene can be viewed as two hexatriene molecules connected by a vinyl crosslink, as is evident from bond order and ring current calculations. This is consistent with the only Kekule resonant structure possible for this molecule.
Resumo:
By definition, the two faces of a pi bond are equivalent.1 However, they are rendered nonequivalent in most molecules because of the absence of a plane of symmetry encompassing the double bond and the adjacent substituents. As a result, additions to trigonal centers from the two faces need not be equally facile. Exploiting this stereodifferentiation in a controlled manner represents one of the core problems in organic synthesis. Evidently, the factors which determine such diastereoselection need to be delineated in as much detail as possible.
Resumo:
The superconducting state of the cuprates in the presence of a magnetic field has been investigated very actively in the past few years through measurements of electrical and thermal transport, ac conductivity, specific heat, and other quantities. The observed behavior is not well understood; it probes the nature of quasiparticies, vortices, and their interactions in a superconductor with nodes in the pair amplitude. We summarize here experimental results and our attempts to understand the phenomena.
Resumo:
We report ab initio calculations for the band dispersions and total as well as partial densities of states for vacancy ordered, clustered spinels, GaMo4S8 and GaV4S8. Results are presented for the high temperature cubic phase for both compounds. Additionally, we discuss results of similar calculations for GaMo4S8 in an idealized cubic structure, as well as the nonmagnetic and the ferromagnetic states of the low temperature rhombohedral structure. Comparison of these results allows us to discuss the unusual aspects of the electronic structure of this interesting class of compounds, and provide estimates of the crystal-field and exchange splitting strengths.
Resumo:
We investigate the evolution of electronic structure with dimensionality (d) of Ni-O-Ni connectivity in divalent nickelates, NiO (3-d), La2NiO4, Pr2NiO4 (2-d), Y2BaNiO5 (1-d) and Lu2BaNi5 (0-d), by analyzing the valence band and the Ni 2p core-level photoemission spectra in conjunction with detailed many-body calculations including full multiplet interactions. Experimental results exhibit a reduction in the intensity of correlation-induced satellite features with decreasing dimensionality. The calculations based on the cluster model, but evaluating both Ni 3d and O 2p related photoemission processes on the same footing, provide a consistent description of both valence-band and core-level spectra in terms of various interaction strengths. While the correlation-induced satellite features in NiO is dominated by poorly screened d(8) states as described in the existing literature, we find that the satellite features in the nickelates with lower dimensional Ni-O-Ni connectivity are in fact dominated by the over-screened d(10)L(2) states. It is found that the changing electronic structure with the dimensionality is primarily driven by two factors: (i) a suppression of the nonlocal contribution to screening; and (ii) a systematic decrease of the charge-transfer energy Delta driven by changes in the Madelung potential. [S0163-1829(99)09619-8].
Resumo:
LaCrO3 is a wide-band-gap insulator which does not evolve to a metallic state even after hole doping. We report electronic structure of this compound and its Sr substituents investigated by photoemission and inverse photoemission spectroscopies in conjunction with various calculations. The results show that LaCrO 3 is close to the Mott-Hubbard insulating regime with a gap of about 2.8 eV. Analysis of Cr 2p core-level spectrum suggests that the intra-atomic Coulomb interaction strength and the charge-transfer energy to be 5.0 and 5.5 eV, respectively, We also estimate the intra-atomic exchange interaction strength and a crystal-field splitting of about 0.7 and 2.0 eV, respectively. Sr substitution leading to hole doping in this system decreases the charge-excitation gap, but never collapses it to give a metallic behavior. The changes in the occupied as well as unoccupied spectral features are discussed in terms of the formation of local Cr4+ configurations arising from strong electron-phonon interactions.
Resumo:
We investigate the evolution of the electronic structure across the insulator-metal transition in NiS2-xSex with changing composition, but in the absence of any structural or magnetic changes. A comparison of the inverse photoemission spectra with band-structure calculations establishes the importance of correlation effects in these systems. Systematic changes in the spectral distribution establish the persistence of the upper Hubbard band well into the metallic regime, with the insulator-to-metal transition being driven by a transfer of spectral weight from the Hubbard band to states close to the Fermi energy.
Resumo:
The photocatalytic ability of cubic Bi1.5ZnNb1.5O7 (BZN) pyrochlore for the decolorization of an acid orange 7 (AO7) azo dye in aqueous solution under ultraviolet (UV) irradiation has been investigated for the first time. BZN catalyst powders prepared using low temperature sol-gel and higher temperature solid-state methods have been evaluated and their reaction rates have been compared.The experimental band gap energy has been estimated from the optical absorption edge and has been used as reference for theoretical calculations. The electronic band structure of BZN has been investigated using first-principles density functional theory (DFT) calculations for random, completely and partially ordered solid solutions of Zn cations in both the A and B sites of the pyrochlore structure.The nature of the orbitals in the valence band (VB) and the conduction band (CB) has been identified and the theoretical band gap energy has been discussed in terms of the DFT model approximations.
Resumo:
The equilibrium geometry, electronic structure and energetic stability of Bi nanolines on clean and hydrogenated Si(001) surfaces have been examined by means of ab initio total energy calculations and scanning tunnelling microscopy. For the Bi nanolines on a clean Si surface the two most plausible structural models, the Miki or M model (Miki et al 1999 Phys. Rev. B 59 14868) and the Haiku or H model (Owen et al 2002 Phys. Rev. Lett. 88 226104), have been examined in detail. The results of the total energy calculations support the stability of the H model over the M model, in agreement with previous theoretical results. For Bi nanolines on the hydrogenated Si(001) surface, we find that an atomic configuration derived from the H model is also more stable than an atomic configuration derived from the M model. However, the energetically less stable (M) model exhibits better agreement with experimental measurements for equilibrium geometry. The electronic structures of the H and M models are very similar. Both models exhibit a semiconducting character, with the highest occupied Bi-derived bands lying at ~0.5 eV below the valence band maximum. Simulated and experimental STM images confirm that at a low negative bias the Bi lines exhibit an 'antiwire' property for both structural models.
Resumo:
Self-organized Bi lines that are only 1.5 nm wide can be grown without kinks or breaks on Si(0 0 1) surfaces to lengths of up to 500 nm. Constant-current topographical images of the lines, obtained with the scanning tunneling microscope, have a striking bias dependence. Although the lines appear darker than the Si terraces at biases below ≈∣1.2∣ V, the contrast reverses at biases above ≈∣1.5∣ V. Between these two ranges the lines and terraces are of comparable brightness. It has been suggested that this bias dependence may be due to the presence of a semiconductor-like energy gap within the line. Using ab initio calculations it is demonstrated that the energy gap is too small to explain the experimentally observed bias dependence. Consequently, at this time, there is no compelling explanation for this phenomenon. An alternative explanation is proposed that arises naturally from calculations of the tunneling current, using the Tersoff–Hamann approximation, and an examination of the electronic structure of the line.
Resumo:
A Bi 2 × n surface net was grown on the Si(001) surface and studied with inverse photoemission, scanning tunnelling microscopy and ab initio and empirical pseudopotential calculations. The experiments demonstrated that Bi adsorption eliminates the dimer related π1* and π2* surface states, produced by correlated dimer buckling, leaving the bulk bandgap clear of unoccupied surface states. Ab initio calculations support this observation and demonstrate that the surface states derived from the formation of symmetric Bi dimers do not penetrate the fundamental bandgap of bulk Si. Since symmetric Bi dimers are an important structural component of the recently discovered Bi nanolines, that self-organize on Si(001) above the Bi desorption temperature, a connection will be made between our findings and the electronic structure of the nanolines.
Resumo:
Bi1.5ZnTa1.5O7 (BZT) has been synthesized using an alkoxide based sol-gel reaction route. The evolution of the phases produced from the alkoxide precursors and their properties have been characterized as function of temperature using a combination of thermogravimetric analysis (TGA) coupled with mass spectrometry (MS), infrared emission spectrometry (IES), X-ray diffraction (XRD), ultraviolet and visible (UV-Vis) spectroscopy, Raman spectroscopy, and N2 adsorption/desorption isotherms. The lowest sintering temperature (600∘C) to obtain phase pure BZT powders with high surface area (14.5m2/g) has been determined from the thermal decomposition and phase analyses.The photocatalytic activity of the BZT powders has been tested for the decolorization of organic azo-dye and found to be photoactive under UV irradiation.The electronic band structure of the BZT has been investigated using density functional theory (DFT) calculations to determine the band gap energy (3.12 eV) and to compare it with experimental band gap (3.02 eV at 800∘C) from optical absorptionmeasurements. An excellent match is obtained for an assumption of Zn cation substitutions at specifically ordered sites in the BZT structure.
Resumo:
Energetics of the ground and excited state intramolecular proton transfer in salicylic acid have been studied by ab initio molecular orbital calculations using the 6-31G** basis set at the restricted Hartree-Fock (RHF) and configuration interaction-single excitation (CIS) levels and also using the semiempirical method AM1 at the RHF level as well as with single and pair doubles excitation configuration interaction spanning eight frontier orbitals (PECI = 8). The ab initio potential energy profile for intramolecular proton transfer in the ground state reveals a single minimum corresponding to the primary form, in the first excited singlet state, however, there are two minima corresponding to the primary and tautomeric forms, separated by a barrier of similar to 6 kcal/mol, thus accounting for dual emission in salicylic acid. Electron density changes with electronic excitation and tautomerism indicate no zwitterion formation. Changes in spectral characteristics with change in pH, due to protonation and deprotonation of salicylic acid, are also accounted for, qualitatively. Although the AM1 calculations suggest a substantial barrier for proton transfer in the ground as well as the first excited state of SA, it predicts the transition wavelength in near quantitative accord with the experimental results for salicylic acid and its protonated and deprotonated forms.