920 resultados para dorsal hippocampus
Resumo:
Textbooks divide between human memory systems based on consciousness. Hippocampus is thought to support only conscious encoding, while neocortex supports both conscious and unconscious encoding. We tested whether processing modes, not consciousness, divide between memory systems in three neuroimaging experiments with 11 amnesic patients (mean age = 45.55 years, standard deviation = 8.74, range = 23-60) and 11 matched healthy control subjects. Examined processing modes were single item versus relational encoding with only relational encoding hypothesized to depend on hippocampus. Participants encoded and later retrieved either single words or new relations between words. Consciousness of encoding was excluded by subliminal (invisible) word presentation. Amnesic patients and controls performed equally well on the single item task activating prefrontal cortex. But only the controls succeeded on the relational task activating the hippocampus, while amnesic patients failed as a group. Hence, unconscious relational encoding, but not unconscious single item encoding, depended on hippocampus. Yet, three patients performed normally on unconscious relational encoding in spite of amnesia capitalizing on spared hippocampal tissue and connections to language cortex. This pattern of results suggests that processing modes divide between memory systems, while consciousness divides between levels of function within a memory system.
Resumo:
Individuals differ widely in how steeply they discount future rewards. The sources of these stable individual differences in delay discounting (DD) are largely unknown. One candidate is the COMT Val158Met polymorphism, known to modulate prefrontal dopamine levels and affect DD. To identify possible neural mechanisms by which this polymorphism may contribute to stable individual DD differences, we measured 73 participants' neural baseline activation using resting electroencephalogram (EEG). Such neural baseline activation measures are highly heritable and stable over time, thus an ideal endophenotype candidate to explain how genes may influence behavior via individual differences in neural function. After EEG-recording, participants made a series of incentive-compatible intertemporal choices to determine the steepness of their DD. We found that COMT significantly affected DD and that this effect was mediated by baseline activation level in the left dorsal prefrontal cortex (DPFC): (i) COMT had a significant effect on DD such that the number of Val alleles was positively correlated with steeper DD (higher numbers of Val alleles means greater COMT activity and thus lower dopamine levels). (ii) A whole-brain search identified a cluster in left DPFC where baseline activation was correlated with DD; lower activation was associated with steeper DD. (iii) COMT had a significant effect on the baseline activation level in this left DPFC cluster such that a higher number of Val alleles was associated with lower baseline activation. (iv) The effect of COMT on DD was explained by the mediating effect of neural baseline activation in the left DPFC cluster. Our study thus establishes baseline activation level in left DPFC as salient neural signature in the form of an endophenotype that mediates the link between COMT and DD.
Resumo:
Recent experiments suggest that humans can form and later retrieve new semantic relations unconsciously by way of hippocampus - the key structure thought to support conscious relational (episodic) memory. Given that the hippocampus subserves both conscious and unconscious relational encoding/retrieval, we expected the hippocampus to be place of unconscious-conscious interactions. This hypothesis was tested in an fMRI experiment on the interaction between the unconscious retrieval of face-associated occupations and the subsequent conscious retrieval of celebrities’ occupations. For subliminal encoding, masked combinations of an unfamiliar face and a written occupation (“actor” or “politician”) were subliminally presented. At test, we presented the former subliminal faces again, without occupations and masks, as conscious retrieval cues. We hypothesized that faces would trigger the unconscious reactivation of the associated occupation - actor or politician -, which in turn would facilitate or inhibit the subsequent conscious recollection of a celebrity’s occupation. Following the presentation of a former subliminal face, we presented the portrait of a celebrity that participants were required to sort according to “actor” or “politician”. Depending on whether the triggered unconscious occupation was congruent or incongruent with the celebrity’s occupation, we expected an expedited or retarded conscious retrieval process as reflected in reaction times. Conscious retrieval was expedited in the congruent condition, but there was no effect in the incongruent condition. fMRI data collected during subliminal relational encoding confirmed that the hippocampus was interacting with neocortical semantic storage sites. fMRI data collected at test indicated that the facilitated conscious retrieval of celebrity-associated occupations was related to deactivations in this same network spanning hippocampus and neocortical semantic storage sites. Hence, unconscious retrieval likely preactivated this network, which allowed for a sparing recruitment of additional neural resources to assist conscious retrieval. This finding supports the notion that consciously and unconsciously acquired relational memories are stored in a single, cohesive hippocampal-neocortical memory space.
Resumo:
Introduction: Schizophrenia patients frequently suffer from complex motor abnormalities including fine and gross motor disturbances, abnormal involuntary movements, neurological soft signs and parkinsonism. These symptoms occur early in the course of the disease, continue in chronic patients and may deteriorate with antipsychotic medication. Furthermore gesture performance is impaired in patients, including the pantomime of tool use. Whether schizophrenia patients would show difficulties of actual tool use has not yet been investigated. Human tool use is complex and relies on a network of distinct and distant brain areas. We therefore aim to test if schizophrenia patients had difficulties in tool use and to assess associations with structural brain imaging using voxel based morphometry (VBM) and tract based spatial statistics (TBSS). Methode: In total, 44 patients with schizophrenia (DSM-5 criteria; 59% men, mean age 38) underwent structural MR imaging and performed the Tool-Use test. The test examines the use of a scoop and a hammer in three conditions: pantomime (without the tool), demonstration (with the tool) and actual use (with a recipient object). T1-weighted images were processed using SPM8 and DTI-data using FSL TBSS routines. To assess structural alterations of impaired tool use we first compared gray matter (GM) volume in VBM and white matter (WM) integrity in TBSS data of patients with and without difficulties of actual tool use. Next we explored correlations of Tool use scores and VBM and TBSS data. Group comparisons were family wise error corrected for multiple tests. Correlations were uncorrected (p < 0.001) with a minimum cluster threshold of 17 voxels (equivalent to a map-wise false positive rate of alpha < 0.0001 using a Monte Carlo procedure). Results: Tool use was impaired in schizophrenia (43.2% pantomime, 11.6% demonstration, 11.6% use). Impairment was related to reduced GM volume and WM integrity. Whole brain analyses detected an effect in the SMA in group analysis. Correlations of tool use scores and brain structure revealed alterations in brain areas of the dorso-dorsal pathway (superior occipital gyrus, superior parietal lobule, and dorsal premotor area) and the ventro-dorsal pathways (middle occipital gyrus, inferior parietal lobule) the action network, as well as the insula and the left hippocampus. Furthermore, significant correlations within connecting fiber tracts - particularly alterations within the bilateral corona radiata superior and anterior as well as the corpus callosum -were associated with Tool use performance. Conclusions: Tool use performance was impaired in schizophrenia, which was associated with reduced GM volume in the action network. Our results are in line with reports of impaired tool use in patients with brain lesions particularly of the dorso-dorsal and ventro-dorsal stream of the action network. In addition an effect of tool use on WM integrity was shown within fiber tracts connecting regions important for planning and executing tool use. Furthermore, hippocampus is part of a brain system responsible for spatial memory and navigation.The results suggest that structural brain alterations in the common praxis network contribute to impaired tool use in schizophrenia.
Resumo:
Recent evidence suggests that humans can form and later retrieve new semantic relations unconsciously by way of hippocampus-the key structure also recruited for conscious relational (episodic) memory. If the hippocampus subserves both conscious and unconscious relational encoding/retrieval, one would expect the hippocampus to be place of unconscious-conscious interactions during memory retrieval. We tested this hypothesis in an fMRI experiment probing the interaction between the unconscious and conscious retrieval of face-associated information. For the establishment of unconscious relational memories, we presented subliminal (masked) combinations of unfamiliar faces and written occupations ("actor" or "politician"). At test, we presented the former subliminal faces, but now supraliminally, as cues for the reactivation of the unconsciously associated occupations. We hypothesized that unconscious reactivation of the associated occupation-actor or politician-would facilitate or inhibit the subsequent conscious retrieval of a celebrity's occupation, which was also actor or politician. Depending on whether the reactivated unconscious occupation was congruent or incongruent to the celebrity's occupation, we expected either quicker or delayed conscious retrieval process. Conscious retrieval was quicker in the congruent relative to a neutral baseline condition but not delayed in the incongruent condition. fMRI data collected during subliminal face-occupation encoding confirmed previous evidence that the hippocampus was interacting with neocortical storage sites of semantic knowledge to support relational encoding. fMRI data collected at test revealed that the facilitated conscious retrieval was paralleled by deactivations in the hippocampus and neocortical storage sites of semantic knowledge. We assume that the unconscious reactivation has pre-activated overlapping relational representations in the hippocampus reducing the neural effort for conscious retrieval. This finding supports the notion of synergistic interactions between conscious and unconscious relational memories in a common, cohesive hippocampal-neocortical memory space.
Resumo:
BACKGROUND High mortality and morbidity rates are observed in patients with bacterial meningitis (BM) and urge for new adjuvant treatments in addition to standard antibiotic therapies. In BM the hippocampal dentate gyrus is injured by apoptosis while in cortical areas ischemic necrosis occurs. Experimental therapies aimed at reducing the inflammatory response and brain damage have successfully been evaluated in animal models of BM. Fluoxetine (FLX) is an anti-depressant of the selective serotonin reuptake inhibitors (SSRI) and was previously shown to be neuroprotective in vitro and in vivo. We therefore assessed the neuroprotective effect of FLX in experimental pneumococcal meningitis. METHODS Infant rats were infected intracisternally with live Streptococcus pneumoniae. Intraperitoneal treatment with FLX (10mgkg(-1)d(-1)) or an equal volume of NaCl was initiated 15min later. 18, 27, and 42h after infection, the animals were clinically (weight, clinical score, mortality) evaluated and subject to a cisternal puncture and inflammatory parameters (i.e., cyto-/chemokines, myeloperoxidase activity, matrix metalloproteinase concentrations) were measured in cerebrospinal fluid (CSF) samples. At 42h after infection, animals were sacrificed and the brains collected for histomorphometrical analysis of brain damage. RESULTS A significant lower number of animals treated with FLX showed relevant hippocampal apoptosis when compared to littermates (9/19 animals vs 18/23, P=0.038). A trend for less damage in cortical areas was observed in FLX-treated animals compared to controls (13/19 vs 13/23, P=ns). Clinical and inflammatory parameters were not affected by FLX treatment. CONCLUSION A significant neuroprotective effect of FLX on the hippocampus was observed in acute pneumococcal meningitis in infant rats.
Resumo:
The purpose of this study was to determine the effects of benzodiazepine in area CA1 of the hippocampus, and to explore possible mechanisms of action for these agents in this brain area. Two distinctly different benzodiazepine-induced changes in hippocampal physiology have been identified. First, benzodiazepine depresses the population spike recorded in stratum pyramidale, indicating a decrease in action potential generation. Second, benzodiazepine decreases the magnitude of post-tetanic potentiation of the population EPSP recorded in stratum radiatum, and shortens the duration. The effect of benzodiazepine on pyramidal cell excitation was reversed by the GABA antagonis bicuculline, and mimicked by GABA itself. Thus the available evidence is consistent with the hypothesis that benzodiazepine acts by enhancing the effect of GABA in this area. In stratum radiatum, on the other hand, the effect of benzodiazepine on post tetanic potentiation of the population EPSP was not altered by bicuculline although bicuculline did antagonize GABA in this area. In addition, application of GABA, while it caused profound changes in the population EPSP,p, did not cause the same changes that were induced by benzodiazepine. Thus the evidence does not support the hypothesis that benzodiazepine is acting in stratum radiatum by enhancing the effects of GABA. ^
Resumo:
The dorsal cochlear nucleus (DCN) receives auditory information via the auditory nerve coming from the cochlea. It is responsible for much of the integration of auditory information, and it projects this auditory information to higher auditory brain centers for further processing. This study focuses on the DCN of adult Rhesus monkeys to characterize two specific cell types, the fusiform and cartwheel cell, based on morphometric parameters and type of glutamate receptor they express. The fusiform cell is the main projection neuron, while the cartwheel cell is the main inhibitory interneuron. Expression of AMPA glutamate receptor subunits is localized to certain cell types. The activity of the CN depends on the AMPA receptor subunit composition and expression. Immunocytochemistry, using specific antibodies for AMPA glutamate receptor subunits GluR1, GluR2/3 and GluR4, was used in conjunction with morphometry to determine the location, morphological characteristics and expression of AMPA receptor subunits in fusiform and cartwheel cells in the primate DCN. Qualitative as well as quantitative data indicates that there are important morphological differences in cell location and expression of AMPA glutamate receptor subunits between the rodent DCN and that of primates. GluR2/3 is widely expressed in the primate DCN. GluR1 is also widely expressed in the primate DCN. GluR4 is diffusely expressed. Expression of GluR2/3 and GluR4 in the primate is similar to that of the rodent. However, expression of GluR1 is different. GluR1 is only expressed by cartwheel cells in the rodent DCN, but is expressed by a variety of cells, including fusiform cells, in the DCN of the primate.
Resumo:
Hippocampal sclerosis is the most frequent pathology encountered in resected mesial temporal structures from patients with intractable temporal lobe epilepsy (TLE). Here, we have used stereological methods to compare the overall density of synapses and neurons between non-sclerotic and sclerotic hippocampal tissue obtained by surgical resection from patients with TLE. Specifically, we examined the possible changes in the subiculum and CA1, regions that seem to be critical for the development and/or maintenance of seizures in these patients. We found a remarkable decrease in synaptic and neuronal density in the sclerotic CA1, and while the subiculum from the sclerotic hippocampus did not display changes in synaptic density, the neuronal density was higher. Since the subiculum from the sclerotic hippocampus displays a significant increase in neuronal density, as well as a various other neurochemical changes, we propose that the apparently normal subiculum from the sclerotic hippocampus suffers profound alterations in neuronal circuits at both the molecular and synaptic level that are likely to be critical for the development or maintenance of seizure activity
Resumo:
Chronic exposure to cocaine induces modifications to neurons in the brain regions involved in addiction. Hence, we evaluated cocaine-induced changes in the hippocampal CA1 field in Fischer 344 (F344) and Lewis (LEW) rats, 2 strains that have been widely used to study genetic predisposition to drug addiction, by combining intracellular Lucifer yellow injection with confocal microscopy reconstruction of labeled neurons. Specifically, we examined the effects of cocaine self-administration on the structure, size, and branching complexity of the apical dendrites of CA1 pyramidal neurons. In addition, we quantified spine density in the collaterals of the apical dendritic arbors of these neurons. We found differences between these strains in several morphological parameters. For example, CA1 apical dendrites were more branched and complex in LEW than in F344 rats, while the spine density in the collateral dendrites of the apical dendritic arbors was greater in F344 rats. Interestingly, cocaine self-administration in LEW rats augmented the spine density, an effect that was not observed in the F344 strain. These results reveal significant structural differences in CA1 pyramidal cells between these strains and indicate that cocaine self-administration has a distinct effect on neuron morphology in the hippocampus of rats with different genetic backgrounds.
Resumo:
The aim of this paper is to develop a probabilistic modeling framework for the segmentation of structures of interest from a collection of atlases. Given a subset of registered atlases into the target image for a particular Region of Interest (ROI), a statistical model of appearance and shape is computed for fusing the labels. Segmentations are obtained by minimizing an energy function associated with the proposed model, using a graph-cut technique. We test different label fusion methods on publicly available MR images of human brains.
Resumo:
It is now accepted that hippocampal lesions impair episodic memory. However, the precise functional role of the hippocampus in episodic memory remains elusive. Recent functional imaging data implicate the hippocampus in processing novelty, a finding supported by human in vivo recordings and event-related potential studies. Here we measure hippocampal responses to novelty, using functional MRI (fMRI), during an item-learning paradigm generated from an artificial grammar system. During learning, two distinct types of novelty were periodically introduced: perceptual novelty, pertaining to the physical characteristics of stimuli (in this case visual characteristics), and exemplar novelty, reflecting semantic characteristics of stimuli (in this case grammatical status within a rule system). We demonstrate a left anterior hippocampal response to both types of novelty and adaptation of these responses with stimulus familiarity. By contrast to these novelty effects, we also show bilateral posterior hippocampal responses with increasing exemplar familiarity. These results suggest a functional dissociation within the hippocampus with respect to the relative familiarity of study items. Neural responses in anterior hippocampus index generic novelty, whereas posterior hippocampal responses index familiarity to stimuli that have behavioral relevance (i.e., only exemplar familiarity). These findings add to recent evidence for functional segregation within the human hippocampus during learning.
Resumo:
Ca2+ released from presynaptic and postsynaptic intracellular stores plays important roles in activity-dependent synaptic plasticity, including long-term depression (LTD) of synaptic strength. At Schaffer collateral–CA1 synapses in the hippocampus, presynaptic ryanodine receptor-gated stores appear to mobilize some of the Ca2+ necessary to induce LTD. Cyclic ADP-ribose (cADPR) has recently been proposed as an endogenous activator of ryanodine receptors in sea urchin eggs and several mammalian cell types. Here, we provide evidence that cADPR-mediated signaling pathways play a key role in inducing LTD. We show that biochemical production of cGMP increases cADPR concentration in hippocampal slices in vitro, and that blockade of cGMP-dependent protein kinase, cADPR receptors, or ryanodine-sensitive Ca2+ stores each prevent the induction of LTD at Schaffer collateral–CA1 synapses. A lack of effect of postsynaptic infusion of either cADPR antagonist indicates a probable presynaptic site of action.