965 resultados para distrofias de retina
Resumo:
Background Patients with early age-related maculopathy ( ARM) do not necessarily show obvious morphological signs or functional impairment. Many have good visual acuity, yet complain of decreased visual performance. The aim of this study was to investigate the aging effects on performance of parafoveal letter recognition at reduced contrast, and defects caused by early ARM and normal fellow eyes of patients with unilateral age-related macular degeneration (nfAMD). Methods Testing of the central visual field (8 radius) was performed by the Macular Mapping Test (MMT) using recognition of letters in 40 parafoveal target locations at four contrast levels (5, 10, 25 and 100%). Effects of aging were investigated in 64 healthy subjects aged 23 to 76 years (CTRL). In addition, 39 eyes (minimum visual acuity of 0.63; 20/30) from 39 patients with either no visible signs of ARM, while the fellow eye had advanced age-related macular degeneration (nfAMD; n=12), or early signs of ARM (eARM; n=27) were examined. Performance was expressed summarily as a ""field score"" (FS). Results Performance in the MMT begins to decline linearly with age in normal subjects from the age of 50 and 54 years on, at 5% and 10% contrast respectively. The differentiation between patients and CTRLs was enhanced if FS at 5% was analyzed along with FS at 10% contrast. In 8/12 patients from group nfAMD and in 18/27 from group eARM, the FS was statistically significantly lower than in the CTRL group in at least one of the lower contrast levels. Conclusion Using parafoveal test locations, a recognition task and diminished contrast increases the chance of early detection of functional defects due to eARM or nfAMD and can differentiate them from those due to aging alone.
Resumo:
Background: This in vivo study assessed and compared the effectiveness of an aqueous indocyanine green (ICG) formulation (R-ICG) and a lipid ICG formulation (L-ICG) in occluding the rabbit choriocapillaris, and determined the singlet oxygen quantum yields and aggregation properties of both formulations in vitro. Methods: Singlet oxygen production and aggregation were compared. The eye fundus of 30 albino rabbits was irradiated 0-15 min after dye injection using an 810 nm diode laser. Fluorescein angiography and light microscopy were used to evaluate the safety and efficacy of R-ICG and L-ICG. Results: L-ICG decreased the dimerisation constant and the tendency of ICG to form aggregates, and increased the efficiency of ICG in generating singlet oxygen (R-ICG, Phi Delta= 0.120 and L-ICG, Phi Delta= 0.210). Using a 10 mg/kg dose, choriocapillaris occlusion was achieved at a light dose of 35.8 J/cm(2) with L-ICG and 71.6 J/cm(2) with R-ICG with minimal damage to the neurosensory retina. Conclusion: Restrictions to the use of ICG in aqueous solution, low singlet oxygen quantum yields and high aggregation tendency, were overcome with L-ICG. The lower laser irradiance required to obtain choriocapillaris occlusion may suggest that L-ICG is a more potent and selective photosensitiser than R-ICG.
Resumo:
The current study describes the morphologic macular features in two eyes that developed full-thickness macular holes in the setting of documented vitreofoveal separation. Using third-generation optical coherence tomography, complete vitreofoveal separation associated with the disruption of the inner foveal retina was documented in both cases. Five months after presentation, decreased vision and epiretinal membrane formation associated with development of a full-thickness macular hole were observed in the first patient. In the second patient, a full-thickness macular hole was demonstrated by optical coherence tomography 6 weeks after presentation. These findings suggest that full-thickness macular holes may develop in eyes with vitreofoveal separation. Evidence of the disturbance of the inner foveal architecture on optical coherence tomography indicates the potential role of factors other than anteroposterior or oblique vitreoretinal tractional forces in the genesis of some full-thickness macular holes.
Resumo:
Purpose: To evaluate the short-term (10 months) safety of a single intravitreal injection of autologous bone marrow-derived mononuclear cells in patients with retinitis pigmentosa or cone-rod dystrophy. Methods: A prospective, Phase I, nonrandomized, open-label study including 3 patients with retinitis pigmentosa and 2 patients with cone-rod dystrophy and an Early Treatment Diabetic Retinopathy Study best-corrected visual acuity of 20/200 or worse. Evaluations including best-corrected visual acuity, full-field electroretinography, kinetic visual field (Goldman), fluorescein and indocyanine green angiography, and optical coherence tomography were performed at baseline and 1, 7, 13, 18, 22, and 40 weeks after intravitreal injection of 10 X 10(6) autologous bone marrow-derived mononuclear cells (0.1 mL) into 1 study eye of each patient. Results: No adverse event associated with the injection was observed. A 1-line improvement in best-corrected visual acuity was measured in 4 patients 1 week after injection and was maintained throughout follow-up. Three patients showed undetectable electroretinography responses at all study visits, while 1 patient demonstrated residual responses for dark-adapted standard flash stimulus (a wave amplitude approximately 35 mu V), which remained recordable throughout follow-up, and 1 patient showed a small response (a wave amplitude approximately 20 mu V) recordable only at Weeks 7, 13, 22, and 40. Visual fields showed no reduction (with a Goldman Standard V5e stimulus) for any patient at any visit. No other changes were observed on optical coherence tomography or fluorescein and indocyanine green angiograms. Conclusion: Intravitreal injection of autologous bone marrow-derived mononuclear cells in eyes with advanced retinitis pigmentosa or cone-rod dystrophy was associated with no detectable structural or functional toxicity over a period of 10 months. Further studies are required to investigate the role, if any, of autologous bone marrow-derived mononuclear cell therapy in the management of retinal dystrophies. RETINA 31: 1207-1214, 2011
Resumo:
Purpose: To investigate potential retinal neuroprotective effects of oral lamotrigine in rabbits after pars plana vitrectomy (PPV) and intravitreal silicone oil injection (SOI). Methods: Twelve New Zealand rabbits (weight, 2.0-2.5 kg) underwent PPV with SOI on the right eye. For 30 days postoperatively, 6 rabbits received a daily oral dose of lamotrigine (25 mg/kg), and 6 rabbits received a daily oral dose of water. The animals were killed 30 days after surgery. All retinas were processed histologically, immunostained using glial fibrillary acidic protein (GFAP), and analyzed by fluorescence microscopy. Retina sections from all groups were analyzed by TUNEL for the presence of apoptosis and stained with hematoxylin-eosin for morphologic analysis and retina cell density measurements in each layer using a Zeiss Axiophot microscope and KS 400 software. Results: Retinas from water-operated eyes showed a significant decrease in cell density associated with cell death compared with retinas from water-control eyes; cell density was reduced by 56% in the outer nuclear layer (ONL), 49% in the inner nuclear layer (INL), and 64% in the ganglion cell layer (GCL). Lamotrigine-operated retinas showed a reduction in cell death when compared with water-operated retinas; cell death was reduced by 52% in the ONL, 25% in the INL, and 56% in the GCL. Water-operated retinas showed TUNEL-positive cells and GFAP immunofluorescence throughout Muller cell processes; lamotrigine-operated retinas showed no TUNEL-positive cells and decreased GFAP staining when compared with water-operated retinas. Conclusions: PPV with SOI was associated with apoptosis of retinal cells and activation of glial cells in rabbit eyes. Oral lamotrigine administration provided protection against these effects.
Resumo:
The study evaluated the efficiency of diagnostic laboratory methods to detect anti-Toxoplasma gondii antibodies in paired serum and aqueous humour samples from experimentally infected pigs. 18-mixed breed pigs were used during the experiment; these were divided into two groups, G I (infected group, n = 10) and G2 (uninfected group, n = 8). Infection was performed with 4 x 10(4) VEG strain oocysts at day 0 by the oral route in G1 animals. All pigs were euthanized at day 60, when retina, aqueous humour, and blood samples were collected. Anti-T gondii antibody levels were assessed in serum (s) and aqueous humour (ah) by indirect immunofluorescence assay (IFA), modified agglutination test (MAT), m-ELISA (using crude membranes from T gondii tachyzoites as antigen) and r-ELISA (using rhoptries from T gondii tachyzoites as antigen). Polymerase chain reactions (PCR) of samples from the retina were performed by using Tox4 and Tox5 primers. Antibody titers of G1 animals ranged from 128 to 1024 and from 16 to 256 in serum and aqueous humour, respectively. There were differences in the correlation coefficients between IFA(s) x IFA (ah) (r = 0.62, P = 0.05), MAT(s) x MAT (ah) (r = 0.97, P < 0.0001); however, there was no significant difference between r-ELISA(s) x r-ELISA (ah) (r = 0. 14, P = 0.7). Antibodies present in serum and aqueous humour recognized similar antigens. Samples of retina were positive by PCR in 30% (3/10) of infected pigs. G2 animals remained without antibody levels and were PCR negative throughout the experiment. These results suggest that the use of a combination of tests and immunoblotting for paired aqueous humour and serum samples could improve the sensitivity and specificity for the diagnosis of ocular toxoplasmosis. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To investigate the retinal biocompatibility of six novel vital dyes for chromovitrectomy. Methods: An amount of 0.05 mL of 0.5% and 0.05% light green (LG), fast green (FG), Evans blue (EB), brilliant blue (BriB), bromophenol blue (BroB), or indigo carmine (IC) was injected intravitreally in the right eye, whereas in the left eye balanced salt solution was applied for control in rabbits` eyes. Clinical examination, fluorescein angiography, histology with light microscopy, and transmission electron microscopy were performed after 1 and 7 days. Retinal cell layers were evaluated for morphologic alterations and number of cells. The electroretinographic changes were assessed at baseline, 24 hours and 7 days. Results: Fluorescein angiography disclosed hypofluorescent spots only in the 0.5% EB group. Light microscopy and transmission electron microscopy disclosed slight focal morphologic changes in eyes exposed to 0.05% IC, FG, BriB, similar to the control at 1 and 7 days. In the lower dose groups, EB, LG, and BroB caused substantial retinal alterations by light microscopy. At the higher dose, BroB and EB produced diffuse cellular edema and vacuolization within the ganglion cells, bipolar cells, and photoreceptors. FG and IC at 0.5% caused slight retinal alterations similar to balanced salt solution injection. LG at 0.5% caused diffuse vacuolization of bipolar cells after 1 and 7 days. Injection of 0.5% EB caused a significant decrease in neuroretinal cell counts in comparison to control eyes in the 7-day examination (P < 0.05). Electroretinography revealed intermittent prolonged latency and decreased amplitude in eyes injected with 0.5% EB, LG, BriB, and BroB, while at the lower dose, only LG and EB induced few functional changes. Conclusion: The progressive order of retinal biocompatibility, from safest to most toxic, was IC, FG, BriB, BroB, LG, EB.
Resumo:
The relative abundance and topographical distribution of retinal cone photoreceptors was measured in 19 bird species to identify possible correlations between photoreceptor complement and visual ecology. In contrast to previous studies, all five types of cone photoreceptor were distinguished, using bright field and epifluorescent light microscopy, in four retinal quadrants. Land birds tended to show either posterior dorsal to anterior ventral or anterior dorsal to posterior ventral gradients in cone photoreceptor distribution, fundus coloration and oil droplet pigmentation across the retina. Marine birds tended to show dorsal to ventral gradients instead. Statistical analyses showed that the proportions of the different cone types varied significantly across the retinae of all species investigated. Cluster analysis was performed on the data to identify groups or clusters of species on the basis of their oil droplet complement. Using the absolute percentages of each oil droplet type in each quadrant for the analysis produced clusters that tended to reflect phylogenetic relatedness between species rather than similarities in their visual ecology. Repeating the analysis after subtracting the mean percentage of a given oil droplet type across the whole retina (the 'eye mean') from the percentage of that oil droplet type in each quadrant, i.e. to give a measure of the variation about the mean, resulted in clusters that reflected diet, feeding behaviour and habitat to a greater extent than phylogeny.
Resumo:
The cystine-glutamate antiporter is a transport system that facilitates the uptake of cystine, concomitant with the release of glutamate. The cystine accumulated by this transporter is generally considered for use in the formation of the cysteine-containing antioxidant glutathione, which is abundant in many glial cells. This study used the simple strategy of generating an antibody to aminoadipic acid, a selective substrate for the cystine-glutamate antiporter. Stereospecific accumulation of aminoadipic acid into specific cell types in rat brain slice preparations was detected immunocytochemically. Strong accumulation was detected in astroglial cells in all brain regions studied including those in white matter tracts. Strong accumulation into radial glial cells, including the retinal Muller cells and the Bergmann glial cells was also observed. Glial accumulation was observed not only in cells within the blood brain barrier, but also outside such; anterior pituitary folliculostellate cell and intermediate lobe pituitary glial cells exhibited strong accumulation of aminoadipic acid. Interestingly, some glial cells such as the posterior pituitary glial cells (pituicytes) exhibited very little if any accumulation of aminoadipic acid. Within the brain labelling was not uniform. Particularly strong labelling was noted in some regions, such as the glial cells surrounding the CA1 pyramidal cells. By contrast, neurons never exhibited uptake of aminoadipic acid. Because cystine uptake is associated with glutamate release, it is suggested that this antiporter might contribute to release of glutamate from glial cells under some pathophysiological conditions. (C) 2001 Wiley-Liss, Inc.
Resumo:
Purpose: To determine whether constriction of proximal arterial vessels precedes involution of the distal hyaloid vasculature in the mouse, under normal conditions, and whether this vasoconstriction is less pronounced when the distal hyaloid network persists, as it does in oxygen-induced retinopathy (OIR). Methods: Photomicrographs of the vasa hyaloidea propria were analysed from pre-term pups (1-2 days prior to birth), and on Days 1-11 post-birth. The OIR model involved exposing pups to similar to 90% O-2 from D1-5, followed by return to ambient air. At sampling times pups were anaesthetised and perfused with india ink. Retinal flatmounts were also incubated with FITC-lectin (BS-1, G. simplicifolia,); this labels all vessels, allowing identification of vessels not patent to the perfusate. Results: Mean diameter of proximal hyaloid vessels in preterm pups was 25.44 +/- 1.98 mum; +/-1 SEM). Within 3-12 hrs of birth, significant vasoconstriction was evident (diameter:12.45 +/- 0.88 mum), and normal hyaloid regression subsequently occurred. Similar vasoconstriction occurred in the O-2-treated group, but this was reversed upon return to room air, with significant dilation of proximal vessels by D7 (diameter: 31.75 +/- 11.99 mum) and distal hyaloid vessels subsequently became enlarged and tortuous. Conclusions: Under normal conditions, vasoconstriction of proximal hyaloid vessels occurs at birth, preceding attenuation of distal hyaloid vessels. Vasoconstriction also occurs in O-2-treated pups during treatment, but upon return to room air, the remaining hyaloid vessels dilate proximally, and the distal vessels become dilated and tortuous. These observations support the contention that regression of the hyaloid network is dependent, in the first instance, on proximal arterial vasoconstriction.
Resumo:
In this study, we demonstrate that Muller cells cultured from human retinas are capable of strongly expressing the glycine transporter Glyt-1 as assessed by immunocytochemistry. By contrast, intact normal and pathological human retinas exhibit Glyt-1 immunoreactivity only in neurons. These data suggest that Glyt-1 expression in cultured Muller cells is an epiphenomenon associated with culturing in vitro, rather than a normal physiological or even pathophysiological phenomenon in vivo. (C) 2001 Wiley-Liss, Inc.
Resumo:
We wished to identify the different types of retinal neurons on the basis of their content of neuroactive substances in both larval tiger salamander and mudpuppy retinas, favored species for electrophysiological investigation. Sections and wholemounts of retinas were labeled by immunocytochemical methods to demonstrate three calcium binding protein species and the common neurotransmitters, glycine, GABA and acetylcholine. Double immunostained sections and single labeled wholemount retinas were examined by confocal microscopy. Immunostaining patterns appeared to be the same in salamander and mudpuppy. Double and single cones, horizontal cells, some amacrine cells and ganglion cells were strongly calbindin-immunoreactive (IR). Calbindin-IR horizontal cells colocalized GABA. Many bipolar cells, horizontal cells, some amacrine cells and ganglion cells were strongly calretinin-IR. One type of horizontal cell and an infrequently occurring amacrine cell were parvalbumin-IR. Acetylcholine as visualized by ChAT-immunoreactivity was seen in a mirror-symmetric pair of amacrine cells that colocalized GABA and glycine. Glycine and GABA colocalized with calretinin, calbindin and occasionally with parvalbumin in amacrine cells. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The spectral sensitivities of avian retinal photoreceptors are examined with respect to microspectrophotometric measurements of single cells, spectrophotometric measurements of extracted or in vitro regenerated visual pigments, and molecular genetic analyses of visual pigment opsin protein sequences. Bird species from diverse orders are compared in relation to their evolution, their habitats and the multiplicity of visual tasks they must perform. Birds have five different types of visual pigment and seven different types of photo receptor-rods, double (uneven twin) cones and four types of single cone. The spectral locations of the wavelengths of maximum absorbance (lambda (max)) of the different visual pigments, and the spectral transmittance characteristics of the intraocular spectral filters (cone oil droplets) that also determine photoreceptor spectral sensitivity, vary according to both habitat and phylogenetic relatedness. The primary influence on avian retinal design appears to be the range of wavelengths available for vision, regardless of whether that range is determined by the spectral distribution of the natural illumination or the spectral transmittance of the ocular media (cornea, aqueous humour, lens, vitreous humour). Nevertheless, other variations in spectral sensitivity exist that reflect the variability and complexity of avian visual ecology. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Glutamate is the major excitatory neurotransmitter in the retina and is removed from the extracellular space by an energy-dependent process involving neuronal and glial cell transporters. The radial glial Muller cells express the glutamate transporter, GLAST, and preferentially accumulate glutamate. However, during an ischaemic episode, extracellular glutamate concentrations may rise to excitotoxic levels. Is this catastrophic rise in extracellular glutamate due to a failure of GLAST? Using immunocytochemistry, we monitored the transport of the glutamate transporter substrate, D-aspartate, in the retina under normal and ischaemic conditions. Two models of compromised retinal perfusion were compared: (1) Anaesthetised rats had their carotid arteries occluded for 7 days to produce a chronic reduction in retinal blood flow. Retinal function was assessed by electroretinography. D-aspartate was injected into the eye for 45 min, Following euthanasia, the retina was processed for D-aspartate. GLAST and glutamate immunocytochemistry. Although reduced retinal perfusion suppresses the electroretinogram b-wave, neither retinal histology, GLAST expression, nor the ability of Muller cells to uptake D-aspartate is affected. As this insult does not appear to cause excitotoxic neuronal damage, these data suggest that GLAST function and glutamate clearance are maintained during periods of reduced retinal perfusion. (2) Occlusion of the central retinal artery for 60 min abolishes retinal perfusion, inducing histological damage and electroretinogram suppression. Although GLAST expression appears to be normal. its ability to transport D-aspartate into Muller cells is greatly reduced. Interestingly, D-aspartate is transported into neuronal cells, i.e. photoreceptors, bipolar and ganglion cells. This suggests that while GLAST is vitally important for the clearance of excess extracellular glutamate, its capability to sustain inward transport is particularly susceptible to an acute ischaemic attack. Manipulation of GLAST function could alleviate the degeneration and blindness that result from ischaemic retinal disease. (C) 2001 Elsevier Science Ltd, All rights reserved.
Resumo:
When visual information is confined to one object plane, the emmetropization end-point is adjusted in accord with the corresponding incident optical vergence at the eye [Proceedings of the 7th International Conference on Myopia (2000) 113]. We now report the effect of adding extra visual information beyond the target plane. Visual conditions were controlled using a cone-lens system: black Maltese cross targets on white opaque backgrounds (OMX) were attached to the open faces of 2.5 cm translucent cones fitted with either 0, +25 or +40 D imaging lenses. An alternative target (TMX) was made by substituting the opaque target background for a transparent background, which allowed access to visual information beyond the target plane. The imaging devices were applied to 7-day-old chicks and worn for 4 days. Prior to this treatment, on day 2, some chicks underwent ciliary nerve section (CNS) to preclude accommodation. All treatments were monocular. Refractive errors and axial ocular dimensions were measured using retinoscopy and A-scan ultrasonography under halothane anesthesia. Treatment effects were specified as mean ( +/-S.D.) interocular differences. Eyes with the OMX/ + 40 D lens combination remained emmetropic ( +0.73 +/-3.57 D), consistent with the target plane being approximately conjugate with the retina. Switching to the TMX caused a hyperopic shift in refractive error ( + 3.78 +/- 3.41 D). This relative shift towards hyperopia in switching from the OMX to the TMX target also occurred for the other two lens powers. Thus, the OMX/ + 25 D lens induced myopia ( - 7.00 +/-5.88 D), corresponding to the imposed hyperopic defocus (target plane now imaged behind the retina), and switching to the TMX resulted in a reduction in myopia (-1.73 +/-5.36 D), The OMX/0 D lens combination produced the largest myopic shift, and here, switching to the TMX condition almost eliminated the myopic response (-15.50 +/-6.62 D cf. -0.56 +/-1.24 D). This relative hyperopic shift associated with switching from the OMX to the TMX target was eliminated by CNS surgery. Thus, the two CNS/TMX groups were both more myopic than the equivalent no CNS/TMX groups ( + 40 D lens: -2.66 +/-2.34 D; +25 D lens: -7.97 +/-6.87 D). When the visual information is restricted to one plane, incident optical vergence appears to direct emmetropization. Adding Visual information at other distances produces a shift in the end-point of ernmetropization in the direction of the added information. That these effects are dependent on the integrity of the accommodation system implies that accommodation plays a role in emmetropization and represents the first reported evidence of this kind. Published by Elsevier Science Ltd.