970 resultados para distributed coupled resonator bandpass filter principles


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Web servers are usually located in a well-organized data center where these servers connect with the outside Internet directly through backbones. Meanwhile, the application-layer distributed denials of service (AL-DDoS) attacks are critical threats to the Internet, particularly to those business web servers. Currently, there are some methods designed to handle the AL-DDoS attacks, but most of them cannot be used in heavy backbones. In this paper, we propose a new method to detect AL-DDoS attacks. Our work distinguishes itself from previous methods by considering AL-DDoS attack detection in heavy backbone traffic. Besides, the detection of AL-DDoS attacks is easily misled by flash crowd traffic. In order to overcome this problem, our proposed method constructs a Real-time Frequency Vector (RFV) and real-timely characterizes the traffic as a set of models. By examining the entropy of AL-DDoS attacks and flash crowds, these models can be used to recognize the real AL-DDoS attacks. We integrate the above detection principles into a modularized defense architecture, which consists of a head-end sensor, a detection module and a traffic filter. With a swift AL-DDoS detection speed, the filter is capable of letting the legitimate requests through but the attack traffic is stopped. In the experiment, we adopt certain episodes of real traffic from Sina and Taobao to evaluate our AL-DDoS detection method and architecture. Compared with previous methods, the results show that our approach is very effective in defending AL-DDoS attacks at backbones. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reliable evaluation of the flood forecasting is a crucial problem for assessing flood risk and consequent damages. Different hydrological models (distributed, semi-distributed or lumped) have been proposed in order to deal with this issue. The choice of the proper model structure has been investigated by many authors and it is one of the main sources of uncertainty for a correct evaluation of the outflow hydrograph. In addition, the recent increasing of data availability makes possible to update hydrological models as response of real-time observations. For these reasons, the aim of this work it is to evaluate the effect of different structure of a semi-distributed hydrological model in the assimilation of distributed uncertain discharge observations. The study was applied to the Bacchiglione catchment, located in Italy. The first methodological step was to divide the basin in different sub-basins according to topographic characteristics. Secondly, two different structures of the semi-distributed hydrological model were implemented in order to estimate the outflow hydrograph. Then, synthetic observations of uncertain value of discharge were generated, as a function of the observed and simulated value of flow at the basin outlet, and assimilated in the semi-distributed models using a Kalman Filter. Finally, different spatial patterns of sensors location were assumed to update the model state as response of the uncertain discharge observations. The results of this work pointed out that, overall, the assimilation of uncertain observations can improve the hydrologic model performance. In particular, it was found that the model structure is an important factor, of difficult characterization, since can induce different forecasts in terms of outflow discharge. This study is partly supported by the FP7 EU Project WeSenseIt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the constant grow of enterprises and the need to share information across departments and business areas becomes more critical, companies are turning to integration to provide a method for interconnecting heterogeneous, distributed and autonomous systems. Whether the sales application needs to interface with the inventory application, the procurement application connect to an auction site, it seems that any application can be made better by integrating it with other applications. Integration between applications can face several troublesome due the fact that applications may not have been designed and implemented having integration in mind. Regarding to integration issues, two tier software systems, composed by the database tier and by the “front-end” tier (interface), have shown some limitations. As a solution to overcome the two tier limitations, three tier systems were proposed in the literature. Thus, by adding a middle-tier (referred as middleware) between the database tier and the “front-end” tier (or simply referred application), three main benefits emerge. The first benefit is related with the fact that the division of software systems in three tiers enables increased integration capabilities with other systems. The second benefit is related with the fact that any modifications to the individual tiers may be carried out without necessarily affecting the other tiers and integrated systems and the third benefit, consequence of the others, is related with less maintenance tasks in software system and in all integrated systems. Concerning software development in three tiers, this dissertation focus on two emerging technologies, Semantic Web and Service Oriented Architecture, combined with middleware. These two technologies blended with middleware, which resulted in the development of Swoat framework (Service and Semantic Web Oriented ArchiTecture), lead to the following four synergic advantages: (1) allow the creation of loosely-coupled systems, decoupling the database from “front-end” tiers, therefore reducing maintenance; (2) the database schema is transparent to “front-end” tiers which are aware of the information model (or domain model) that describes what data is accessible; (3) integration with other heterogeneous systems is allowed by providing services provided by the middleware; (4) the service request by the “frontend” tier focus on ‘what’ data and not on ‘where’ and ‘how’ related issues, reducing this way the application development time by developers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The task of controlling urban traffic requires flexibility, adaptability and handling uncertain information spread through the intersection network. The use of fuzzy sets concepts convey these characteristics to improve system performance. This paper reviews a distributed traffic control system built upon a fuzzy distributed architecture previously developed by the authors. The emphasis of the paper is on the application of the system to control part of Campinas downtown area. Simulation experiments considering several traffic scenarios were performed to verify the capabilities of the system in controlling a set of coupled intersections. The performance of the proposed system is compared with conventional traffic control strategies under the same scenarios. The results obtained show that the distributed traffic control system outperforms conventional systems as far as average queues, average delay and maximum delay measures are concerned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an improved design methodology for determining the parameters used in the classical Series-Parallel Loaded Resonant (SPLR) filter employed in the switching frequency controlled dimmable electronic ballasts. According to the analysis developed in this paper, it is possible to evaluate some characteristics of the resonant filter during the dimming process, such as: range of switching frequency, phase shift and rms value of the current drained by the resonant filter + fluorescent lamp set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an approach for structural health monitoring (SHM) by using adaptive filters. The experimental signals from different structural conditions provided by piezoelectric actuators/sensors bonded in the test structure are modeled by a discrete-time recursive least square (RLS) filter. The biggest advantage to use a RLS filter is the clear possibility to perform an online SHM procedure since that the identification is also valid for non-stationary linear systems. An online damage-sensitive index feature is computed based on autoregressive (AR) portion of coefficients normalized by the square root of the sum of the square of them. The proposed method is then utilized in a laboratory test involving an aeronautical panel coupled with piezoelectric sensors/actuators (PZTs) in different positions. A hypothesis test employing the t-test is used to obtain the damage decision. The proposed algorithm was able to identify and localize the damages simulated in the structure. The results have shown the applicability and drawbacks the method and the paper concludes with suggestions to improve it. ©2010 Society for Experimental Mechanics Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a new methodology to control the power flow between a distributed generator (DG) and the electrical power distribution grid. It is used the droop voltage control to manage the active and reactive power. Through this control a sinusoidal voltage reference is generated to be tracked by voltage loop and this loop generates the current reference for the current loop. The proposed control introduces feed-forward states improving the control performance in order to obtain high quality for the current injected to the grid. The controllers were obtained through the linear matrix inequalities (LMI) using the D-stability analysis to allocate the closed-loop controller poles. Therefore, the results show quick transient response with low oscillations. Thus, this paper presents the proposed control technique, the main simulation results and a prototype with 1000VA was developed in the laboratory in order to demonstrate the feasibility of the proposed control. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voltages and currents in the transmission line are described by differential equations that are difficult to solve due soil and skin effect that has to be considered for accurate results, but it increases their complexity. Therefore there are some models to study the voltages and currents along in transmission line. The distributed parameters model that transforms the equations in time domain to the frequency domain and once the solutions are obtained, they are converted to time domain using the Inverse Laplace Transform using numerical methods. Another model is named lumped parameters model and it considers the transmission line represented by a pi-circuit cascade and the currents and voltages are described by state equations. In the simulations using the lumped parameters model, it can be observed the presence of spurious oscillations that are independent of the quantity of pi-circuits used and do not represent the real value of the transient. In this work will be projected a passive low-pass filter directly inserted in the lumped parameters model to reduce the spurious oscillations in the simulations, making this model more accurate and reliable for studying the electromagnetic transients in power systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Comprehensive two-dimensional gas chromatography (GC x GC) is a powerful technique that provides excellent separation and identification of analytes in highly complex samples with considerable increase in GC peak capacities. However, since second dimension analyses are very fast, detectors with a rapid acquisition rate are required. Over the last years, quite a number of studies have discussed the potential and limitations of the combination GC x GC with a variety of quadrupole mass spectrometers. The present research focuses on the evaluation of qMS effectiveness at a 10,000-amu/s scan speed and 20-Hz scan frequency for the identification (full scan mode acquisition-TIC) and quantification (extracted ion chromatogram) of target pesticide residues in tomato samples. The following MS parameters have been evaluated: number of data points per peak, mass spectrum quality, peak skewing, and sensitivity. The validated proposed GC x GC/qMS method presented satisfactory results in terms of repeatability (coefficient of variation lower than 15%), accuracy (84-117%), and linearity (ranging from 25 to 500 ng/g), while significant enhancement in sensitivity was observed (a factor of around 10) under scan conditions. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the transport of heat along a chain of particles interacting through anharmonic potentials consisting of quartic terms in addition to harmonic quadratic terms and subject to heat reservoirs at its ends. Each particle is also subject to an impulsive shot noise with exponentially distributed waiting times whose effect is to change the sign of its velocity, thus conserving the energy of the chain. We show that the introduction of this energy conserving stochastic noise leads to Fourier's law. That is for large system size L the heat current J behaves as J ‘approximately’ 1/L, which amounts to say that the conductivity k is constant. The conductivity is related to the current by J = kΔT/L, where ΔT is the difference in the temperatures of the reservoirs. The behavior of heat conductivity k for small intensities¸ of the shot noise and large system sizes L are obtained by assuming a scaling behavior of the type k = ‘L POT a Psi’(L’lambda POT a/b’) where a and b are scaling exponents. For the pure harmonic case a = b = 1, characterizing a ballistic conduction of heat when the shot noise is absent. For the anharmonic case we found values for the exponents a and b smaller then 1 and thus consistent with a superdiffusive conduction of heat without the shot noise. We also show that the heat conductivity is not constant but is an increasing function of temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis reports on the experimental realization, characterization and application of a novel microresonator design. The so-called “bottle microresonator” sustains whispering-gallery modes in which light fields are confined near the surface of the micron-sized silica structure by continuous total internal reflection. While whispering-gallery mode resonators in general exhibit outstanding properties in terms of both temporal and spatial confinement of light fields, their monolithic design makes tuning of their resonance frequency difficult. This impedes their use, e.g., in cavity quantum electrodynamics (CQED) experiments, which investigate the interaction of single quantum mechanical emitters of predetermined resonance frequency with a cavity mode. In contrast, the highly prolate shape of the bottle microresonators gives rise to a customizable mode structure, enabling full tunability. The thesis is organized as follows: In chapter I, I give a brief overview of different types of optical microresonators. Important quantities, such as the quality factor Q and the mode volume V, which characterize the temporal and spatial confinement of the light field are introduced. In chapter II, a wave equation calculation of the modes of a bottle microresonator is presented. The intensity distribution of different bottle modes is derived and their mode volume is calculated. A brief description of light propagation in ultra-thin optical fibers, which are used to couple light into and out of bottle modes, is given as well. The chapter concludes with a presentation of the fabrication techniques of both structures. Chapter III presents experimental results on highly efficient, nearly lossless coupling of light into bottle modes as well as their spatial and spectral characterization. Ultra-high intrinsic quality factors exceeding 360 million as well as full tunability are demonstrated. In chapter IV, the bottle microresonator in add-drop configuration, i.e., with two ultra-thin fibers coupled to one bottle mode, is discussed. The highly efficient, nearly lossless coupling characteristics of each fiber combined with the resonator's high intrinsic quality factor, enable resonant power transfers between both fibers with efficiencies exceeding 90%. Moreover, the favorable ratio of absorption and the nonlinear refractive index of silica yields optical Kerr bistability at record low powers on the order of 50 µW. Combined with the add-drop configuration, this allows one to route optical signals between the outputs of both ultra-thin fibers, simply by varying the input power, thereby enabling applications in all-optical signal processing. Finally, in chapter V, I discuss the potential of the bottle microresonator for CQED experiments with single atoms. Its Q/V-ratio, which determines the ratio of the atom-cavity coupling rate to the dissipative rates of the subsystems, aligns with the values obtained for state-of-the-art CQED microresonators. In combination with its full tunability and the possibility of highly efficient light transfer to and from the bottle mode, this makes the bottle microresonator a unique tool for quantum optics applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient coupling of light to quantum emitters, such as atoms, molecules or quantum dots, is one of the great challenges in current research. The interaction can be strongly enhanced by coupling the emitter to the eva-nescent field of subwavelength dielectric waveguides that offer strong lateral confinement of the guided light. In this context subwavelength diameter optical nanofibers as part of a tapered optical fiber (TOF) have proven to be powerful tool which also provide an efficient transfer of the light from the interaction region to an optical bus, that is to say, from the nanofiber to an optical fiber. rnAnother approach towards enhancing light–matter interaction is to employ an optical resonator in which the light is circulating and thus passes the emitters many times. Here, both approaches are combined by experi-mentally realizing a microresonator with an integrated nanofiber waist. This is achieved by building a fiber-integrated Fabry-Pérot type resonator from two fiber Bragg grating mirrors with a stop-band near the cesium D2-line wavelength. The characteristics of this resonator fulfill the requirements of nonlinear optics, optical sensing, and cavity quantum electrodynamics in the strong-coupling regime. Together with its advantageous features, such as a constant high coupling strength over a large volume, tunability, high transmission outside the mirror stop band, and a monolithic design, this resonator is a promising tool for experiments with nanofiber-coupled atomic ensembles in the strong-coupling regime. rnThe resonator's high sensitivity to the optical properties of the nanofiber provides a probe for changes of phys-ical parameters that affect the guided optical mode, e.g., the temperature via the thermo-optic effect of silica. Utilizing this detection scheme, the thermalization dynamics due to far-field heat radiation of a nanofiber is studied over a large temperature range. This investigation provides, for the first time, a measurement of the total radiated power of an object with a diameter smaller than all absorption lengths in the thermal spectrum at the level of a single object of deterministic shape and material. The results show excellent agreement with an ab initio thermodynamic model that considers heat radiation as a volumetric effect and that takes the emitter shape and size relative to the emission wavelength into account. Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and has important applications, such as heat management in nano-devices or radiative forcing of aerosols in Earth's climate system. rnUsing a similar method, the effect of the TOF's mechanical modes on the polarization and phase of the fiber-guided light is studied. The measurement results show that in typical TOFs these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that couple to the nanofiber-guided light via the strain-optic effect. An ab-initio opto-mechanical model of the TOF is developed that provides an accurate quantitative prediction for the mode spectrum and the mechanically induced polarization and phase fluctuations. These high-frequency fluctuations may limit the ultimate ideality of fiber-coupling into photonic structures. Furthermore, first estimations show that they may currently limit the storage time of nanofiber-based atom traps. The model, on the other hand, provides a method to design TOFs with tailored mechanical properties in order to meet experimental requirements. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emissions, filtration and oxidation characteristics of a diesel oxidation catalyst (DOC) and a catalyzed particulate filter (CPF) in a Johnson Matthey catalyzed continuously regenerating trap (CCRT ®) were studied by using computational models. Experimental data needed to calibrate the models were obtained by characterization experiments with raw exhaust sampling from a Cummins ISM 2002 engine with variable geometry turbocharging (VGT) and programmed exhaust gas recirculation (EGR). The experiments were performed at 20, 40, 60 and 75% of full load (1120 Nm) at rated speed (2100 rpm), with and without the DOC upstream of the CPF. This was done to study the effect of temperature and CPF-inlet NO2 concentrations on particulate matter oxidation in the CCRT ®. A previously developed computational model was used to determine the kinetic parameters describing the oxidation characteristics of HCs, CO and NO in the DOC and the pressure drop across it. The model was calibrated at five temperatures in the range of 280 – 465° C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec. The downstream HCs, CO and NO concentrations were predicted by the DOC model to within ±3 ppm. The HCs and CO oxidation kinetics in the temperature range of 280 - 465°C and an exhaust volumetric flow rate of 0.447 - 0.843 act-m3/sec can be represented by one ’apparent’ activation energy and pre-exponential factor. The NO oxidation kinetics in the same temperature and exhaust flow rate range can be represented by ’apparent’ activation energies and pre-exponential factors in two regimes. The DOC pressure drop was always predicted within 0.5 kPa by the model. The MTU 1-D 2-layer CPF model was enhanced in several ways to better model the performance of the CCRT ®. A model to simulate the oxidation of particulate inside the filter wall was developed. A particulate cake layer filtration model which describes particle filtration in terms of more fundamental parameters was developed and coupled to the wall oxidation model. To better model the particulate oxidation kinetics, a model to take into account the NO2 produced in the washcoat of the CPF was developed. The overall 1-D 2-layer model can be used to predict the pressure drop of the exhaust gas across the filter, the evolution of particulate mass inside the filter, the particulate mass oxidized, the filtration efficiency and the particle number distribution downstream of the CPF. The model was used to better understand the internal performance of the CCRT®, by determining the components of the total pressure drop across the filter, by classifying the total particulate matter in layer I, layer II, the filter wall, and by the means of oxidation i.e. by O2, NO2 entering the filter and by NO2 being produced in the filter. The CPF model was calibrated at four temperatures in the range of 280 – 465 °C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec, in CPF-only and CCRT ® (DOC+CPF) configurations. The clean filter wall permeability was determined to be 2.00E-13 m2, which is in agreement with values in the literature for cordierite filters. The particulate packing density in the filter wall had values between 2.92 kg/m3 - 3.95 kg/m3 for all the loads. The mean pore size of the catalyst loaded filter wall was found to be 11.0 µm. The particulate cake packing densities and permeabilities, ranged from 131 kg/m3 - 134 kg/m3, and 0.42E-14 m2 and 2.00E-14 m2 respectively, and are in agreement with the Peclet number correlations in the literature. Particulate cake layer porosities determined from the particulate cake layer filtration model ranged between 0.841 and 0.814 and decreased with load, which is about 0.1 lower than experimental and more complex discrete particle simulations in the literature. The thickness of layer I was kept constant at 20 µm. The model kinetics in the CPF-only and CCRT ® configurations, showed that no ’catalyst effect’ with O2 was present. The kinetic parameters for the NO2-assisted oxidation of particulate in the CPF were determined from the simulation of transient temperature programmed oxidation data in the literature. It was determined that the thermal and NO2 kinetic parameters do not change with temperature, exhaust flow rate or NO2 concentrations. However, different kinetic parameters are used for particulate oxidation in the wall and on the wall. Model results showed that oxidation of particulate in the pores of the filter wall can cause disproportionate decreases in the filter pressure drop with respect to particulate mass. The wall oxidation model along with the particulate cake filtration model were developed to model the sudden and rapid decreases in pressure drop across the CPF. The particulate cake and wall filtration models result in higher particulate filtration efficiencies than with just the wall filtration model, with overall filtration efficiencies of 98-99% being predicted by the model. The pre-exponential factors for oxidation by NO2 did not change with temperature or NO2 concentrations because of the NO2 wall production model. In both CPF-only and CCRT ® configurations, the model showed NO2 and layer I to be the dominant means and dominant physical location of particulate oxidation respectively. However, at temperatures of 280 °C, NO2 is not a significant oxidizer of particulate matter, which is in agreement with studies in the literature. The model showed that 8.6 and 81.6% of the CPF-inlet particulate matter was oxidized after 5 hours at 20 and 75% load in CCRT® configuration. In CPF-only configuration at the same loads, the model showed that after 5 hours, 4.4 and 64.8% of the inlet particulate matter was oxidized. The increase in NO2 concentrations across the DOC contributes significantly to the oxidation of particulate in the CPF and is supplemented by the oxidation of NO to NO2 by the catalyst in the CPF, which increases the particulate oxidation rates. From the model, it was determined that the catalyst in the CPF modeslty increases the particulate oxidation rates in the range of 4.5 – 8.3% in the CCRT® configuration. Hence, the catalyst loading in the CPF of the CCRT® could possibly be reduced without significantly decreasing particulate oxidation rates leading to catalyst cost savings and better engine performance due to lower exhaust backpressures.