833 resultados para discrete facility location
Resumo:
Neuroimaging of the self has focused on high-level mechanisms such as language, memory or imagery of the self and implicated widely distributed brain networks. Yet recent evidence suggests that low-level mechanisms such as multisensory and sensorimotor integration may play a fundamental role in self-related processing. In the present study we used visuotactile multisensory conflict, robotics, virtual reality, and fMRI to study such low-level mechanisms by experimentally inducing changes in self-location. Participants saw a video of a person's back (body) or an empty room (no-body) being stroked while a MR-compatible robotic device stroked their back. The latter tactile input was synchronous or asynchronous with respect to the seen stroking. Self-location was estimated behaviorally confirming previous data that self-location only differed between the two body conditions. fMRI results showed a bilateral activation of the temporo-parietal cortex with a significantly higher BOLD signal increase in the synchronous/body condition with respect to the other conditions. Sensorimotor cortex and extrastriate-body-area were also activated. We argue that temporo-parietal activity reflects the experience of the conscious 'I' as embodied and localized within bodily space, compatible with clinical data in neurological patients with out-of-body experiences.
Resumo:
This study aimed at learning about the feelings experienced by mothers while breastfeeding their premature babies in a rooming-in facility, by means of individual interviews with 33 mothers during the period of February to April 2006, at a maternity hospital in Natal/RN/Brazil. The main feelings referred by the mothers regarding their inability to breastfeed their premature babies immediately after delivery were: sorrow, guilt, disappointment, frustration, insecurity, and fear of touching, holding or harming the delicate babies while breastfeeding. However, the mother-child bond that was formed when the baby was discharged from the Neonatal Intensive Care Unit and taken to the rooming-in facility was reflected by feelings of fulfillment, pride, and satisfaction at experiencing the first breastfeeding.
Resumo:
In recent years, the large deployment of mobile devices has led to a massiveincrease in the volume of records of where people have been and when they were there.The analysis of these spatio-temporal data can supply high-level human behaviorinformation valuable to urban planners, local authorities, and designer of location-basedservices. In this paper, we describe our approach to collect and analyze the history ofphysical presence of tourists from the digital footprints they publicly disclose on the web.Our work takes place in the Province of Florence in Italy, where the insights on thevisitors’ flows and on the nationalities of the tourists who do not sleep in town has beenlimited to information from survey-based hotel and museums frequentation. In fact, mostlocal authorities in the world must face this dearth of data on tourist dynamics. In thiscase study, we used a corpus of geographically referenced photos taken in the provinceby 4280 photographers over a period of 2 years. Based on the disclosure of the locationof the photos, we design geovisualizations to reveal the tourist concentration and spatiotemporalflows. Our initial results provide insights on the density of tourists, the points ofinterests they visit as well as the most common trajectories they follow.
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
Sex differences in cognition have been largely investigated. The most consistent sex differences favoring females are observed in object location memory involving the left hemisphere whereas the most consistent sex differences favoring males are observed in tasks that require mental rotation involving the right hemisphere. Here we used a task involving these two abilities to see the impact of mental rotation on object location memory. To that end we used a combination of behavioral and event-related potential (ERP) electroencephalography (EEG) measures.A computer screen displayed a square frame of 4 pairs of images (a "teddy" bear, a shoe, an umbrella and a lamp) randomly arranged around a central fixation cross. After a 10-second interval for memorization, images disappeared and were replaced by a test frame with no image but a random pair of two locations marked in black. In addition, this test frame was randomly displayed either in the original orientation (0° rotation) or in the rotated one (90° clockwise - CW - or 90° counterclockwise - CCW). Preceding the test frame, an arrow indicating the presence or the absence of rotation of the frame was displayed on the screen. The task of the participants (15 females and 15 males) was to determine if two marked locations corresponded or not to a pair of identical images. Each response was followed by feedback.Findings showed no significant sex differences in the performance of the original orientation. In comparison with this position, the rotation of the frame produced an equal decrease of male and female performance. In addition, this decrease was significantly higher when the rotation of the frame was in a CCW direction. We further assessed the ERP when the arrow indicated the direction of rotation as stimulus-onset, during four time windows representing major components C1, P1, N1 and N2. Although no sex differences were observed in performance, brain activities differed according to sex. Enhanced amplitudes were found for the CCW compared to CW rotation over the right posterior areas for the P1, N1 and N2 components for men as well as for women. Major topographical differences related to sex were measured for the CW rotation condition as marked lateralized amplitude: left-hemisphere amplitude larger than right one was measured during P1 time range for men. These similar patterns prolonged from P1 to N1 for women. Early distinctions were found in interaction with sex between CCW and CW waveform amplitudes, expressing over anterior electrode sites during C1 time range (0-50 ms post-stimulus).In conclusion (i) women do not outperform men in object location memory in this study (absence of rotation condition); (ii) mental rotation, in particular the direction of rotation, influences performance on object location memory; (iii) CCW rotation is associated with activity in the right parietal hemisphere whereas the CW rotation involves the left parietal hemisphere; (iv) this last effect is less pronounced in males, which could explain why greater involvement of right parietal areas in men and of bilateral posterior areas in women is generally reported in mental rotation tasks; and (v) the early distinctions between both directions of rotation located over anterior sites could be related to sex differences in their respective involvement of control mechanisms.
Resumo:
Other Audit Reports - Letters
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report
Resumo:
State University Audit Report