975 resultados para dielectric film system
Resumo:
Curing of encapsulant material in a simplified microelectronics package using an open oven Variable Frequency Microwave (VFM) system is numerically simulated using a coupled solver approach. A numerical framework capable of simulating electromagnetic field distribution within the oven system, plus heat transfer, cure rate, degree of cure and thermally induced stresses within the encapsulant material is presented. The discrete physical processes have been integrated into a fully coupled solution, enabling usefully accurate results to be generated. Numerical results showing the heating and curing of the encapsulant material have been obtained and are presented in this contribution. The requirement to capture inter-process coupling and the variation in dielectric and thermophysical material properties is discussed and illustrated with simulation results.
Resumo:
We introduce a novel method to simulate hydrated macromolecules with a dielectric continuum representation of the surrounding solvent. In our approach, the interaction between the solvent and the molecular degrees of freedom is described by means of a polarization density free energy functional which is minimum at electrostatic equilibrium. After a pseudospectral expansion of the polarization and a discretization of the functional, we construct the equations of motion for the system based on a Car-Parrinello technique. In the limit of the adiabatic evolution of the polarization field variables, our method provides the solution of the dielectric continuum problem "on the fly," while the molecular coordinates are propagated. In this first study, we show how our dielectric continuum molecular dynamics method can be successfully applied to hydrated biomolecules, with low cost compared to free energy simulations with explicit solvent. To our knowledge, this is the first time that stable and conservative molecular dynamic simulations of solutes can be performed for a dielectric continuum model of the solvent. (C) 2001 American Institute of Physics.
Resumo:
The dielectric properties of Au/[93%Pb(Mg1/3Nb2/3)O-3-7%PbTiO3] (PMN-PT)/(La0.5Sr0.5)CoO3/MgO thin-film capacitor heterostructures, made using pulsed laser deposition, have been investigated, with particular emphasis on the changes in response associated with increasing the magnitude of the ac measuring field. It was found that increasing the ac field caused a change in the frequency spectrum of relaxators, increasing the speed of response of "slow" relaxators, with an associated decrease in the freezing temperature (T-f) of the relaxor system; in addition, other characteristic parameters relating to polar relaxation (activation energy E-a and attempt frequency 1/tau(0)), described by fitting of the dielectric response to a Vogel-Fulcher expression, were found to change continuously as ac field levels were increased.
Resumo:
Pulsed laser deposition was used to make a series of Au/Ba0.5Sr0.5TiO3 (BST)/SrRuO3/MgO thin film capacitors with dielectric thickness ranging from similar to15 nm to similar to1 mum. Surface grain size of the dielectric was monitored as a function of thickness using both atomic force microscopy and transmission electron microscopy. Grain size data were considered in conjunction with low field dielectric constant measurements. It was observed that the grain size decreased with decreasing thickness in a manner similar to the dielectric constant. Simple models were developed in which a functionally inferior layer at the grain boundary was considered as responsible for the observed dielectric behavior. If a purely columnar microstructure was assumed, then constant thickness grain-boundary dead layers could indeed reproduce the series capacitor dielectric response observed, even though such layers would contribute electrically in parallel with unaffected bulk- like BST. Best fits indicated that the dead layers would have a relative dielectric constant similar to40, and thickness of the order of tens of nanometers. For microstructures that were not purely columnar, models did not reproduce the observed dielectric behavior well. However, cross-sectional transmission electron microscopy indicated columnar microstructure, suggesting that grain boundary dead layers should be considered seriously in the overall dead-layer debate. (C) 2002 American Institute of Physics.
Resumo:
The focused ion beam microscope (FIB) has been used to fabricate thin parallel-sided ferroelectric capacitors from single crystals of BaTiO3 and SrTiO3. A series of nano-sized capacitors ranging in thickness from similar to660 nm to similar to300 nm were made. Cross-sectional high resolution transmission electron microscopy (HRTEM) revealed that during capacitor fabrication, the FIB rendered around 20 nm of dielectric at the electrode-dielectric interface amorphous, associated with local gallium impregnation. Such a region would act electrically in series with the single crystal and would presumably have a considerable negative influence on the dielectric properties. However, thermal annealing prior to gold electrodes deposition was found to fully recover the single crystal capacitors and homogenise the gallium profile. The dielectric testing of the STO ultra-thin single crystal capacitors was performed yielding a room temperature dielectric constant of similar to300, as is the case in bulk. Therefore, there was no evidence of a collapse in dielectric constant associated with thin film dimensions.
Resumo:
Pulsed Laser Deposition (PLD) was used to make Au/(Ba0.5Sr0.5)TiO3/(La0.5Sr0.5) CoO3/MgO thin film capacitor structures. Functional properties were studied with changing BST thickness from similar to1265 nm to similar to63 nm. The dielectric constant was found to decrease, and migration of T-m (the temperature at which the dielectric constant is maximum) to lower temperatures occurred as thickness was reduced. Curie-Weiss plots of the as-obtained dielectric data, indicated that the Curie temperature was also systemmatically progressively depressed. Further, fitting to expressions previously used to describe diffuse phase transitions suggested increased diffuseness in transformation behaviour as film thickness decreased. This paper discusses the care needed in interpreting the observations given above. We make particular distinction between the apparent Curie-temperature derived from Curie-Weiss plots of as-measured data, and the inherent Curie temperature determined after correction for the interfacial capacitance. We demonstrate that while the apparent Curie temperature decreases as thickness decreases, the inherent Curie temperature is thickness independent. Thickness-invariant phase transition behaviour is confirmed from analysis of polarisation loops, and from examination of the temperature dependence of the loss-tangent. We particularly note that correction of data for interfacial capacitance does not alter the position of T-m. We must therefore conclude that the position of T-m is not related simply to phase transformation behaviour in BST thin films.
Resumo:
Results are reported on the a-b plane dielectric function (epsilon) of thin-film c-axis NdBa2Cu3O7-delta with close to optimal oxygen doping (T-c similar to 90 K) in the mid-infrared (wavelength 3.392 mum) over the temperature range 85 K to 300 K. An attenuated total reflectance technique based on the excitation of surface plasmon polaritons is used. The results show that \epsilon (r)\ decreases quasi-linearly with increasing temperature, while Ei is invariant with temperature to within experimental uncertainties. Representative values are epsilon = [epsilon (r) + i epsilon (i)] = (-12.9 +/- 0.6) + i(23.0 +/- 1.5) at T similar to 295 K and epsilon = (-15.7 +/- 0.7) + i(23.5 +/- 1.1) at T similar to 90 K. The raw data an interpreted in terms of the generalized Drude model which gives effective scattering rates (1/tau*) that increase with temperature from about 3800 cm(-1) at 90 K to about 4300 cm(-1) at 295 K. There are indications of a superlinear T-dependence in the scattering, 1/tau*: a fit to a function of the form 1/tau* = A + BTalpha gives alpha = 2.8 +/- 0.7. The effective plasma frequency, omega (p)*, with an average value of approximately 21 000 cm(-1) was independent of temperature.
Resumo:
Patterns forming spontaneously in extended, three-dimensional, dissipative systems are likely to excite several homogeneous soft modes (approximate to hydrodynamic modes) of the underlying physical system, much more than quasi-one- (1D) and two-dimensional (2D) patterns are. The reason is the lack of damping boundaries. This paper compares two analytic techniques to derive the pattern dynamics from hydrodynamics, which are usually equivalent but lead to different results when applied to multiple homogeneous soft modes. Dielectric electroconvection in nematic liquid crystals is introduced as a model for 3D pattern formation. The 3D pattern dynamics including soft modes are derived. For slabs of large but finite thickness the description is reduced further to a 2D one. It is argued that the range of validity of 2D descriptions is limited to a very small region above threshold. The transition from 2D to 3D pattern dynamics is discussed. Experimentally testable predictions for the stable range of ideal patterns and the electric Nusselt numbers are made. For most results analytic approximations in terms of material parameters are given. [S1063-651X(00)09512-X].
Resumo:
Thin films of titanium dioxide and titanium dioxide with incorporated gold and silver nanoparticles were deposited onto glass microscope slides, steel and titanium foil coupons by two sol-gel dip-coating methods. The film's photocatalytic activity and ability to evolve oxygen in a sacrificial solution were assessed. It was found that photocatalytic activity increased with film thickness (from 50 to 500 nm thick samples) for the photocatalytic degradation of methylene blue in solution and resazurin redox dye in an intelligent ink dye deposited on the surface. Contrastingly, an optimum film thickness of similar to 200 nm for both composite and pure films of titanium dioxide was found for water oxidation, using persulfate (S2O82-) as a sacrificial electron acceptor. The nanoparticle composite films showed significantly higher activity in oxygen evolution studies compared with plain TiO2 films.
Resumo:
The preparation of a novel, flexible, photocatalytic, oxygen-scavenging polymer film is described. The film incorporates nanocrystalline titania particles in an ethyl cellulose polymer film, with or without an added sacrificial electron donor of triethanolamine. When coated on the inside of a glass vessel its UV-driven light-scavenging action is demonstrated by platinum octaethyl porphyrin coated glass beads sealed inside, since their luminescence increases with increasing UV-irradiation time. When used as a flexible film, work with an oxygen electrode shows that the film is able to scavenge oxygen at an average rate of 0.017 cm(3) O-2 h(-1) cm(-2) over a 24 h period, which compares favourably to other, well-established oxygen-scavenger systems. The potential of using such as system for oxygen scavenging in packaging is discussed briefly. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The diffusion-controlled response and recovery behaviour of a naked optical film sensor (i.e., with no protective membrane) with a hyperbolic-type response [i.e., S0/S = (1 + Kc), where S is the measured value of the absorbance or luminescence intensity of one form of the sensor dye in the presence of the analyte, S0 is the observed value of S in the absence of analyte and K is a constant] to changes in analyte concentration, c, in a system under test is approximated using a simple model, and described more accurately using a numerical model; in both models it is assumed that the system under test represents an infinite reservoir. Each model predicts the variations in the response and recovery times of such an optical sensor, as a function of the final external analyte concentration, the film thickness (I) and the analyte diffusion coefficient (D). From an observed signal versus time profile for a naked optical film sensor it is shown how values for K and D/I2 can be extracted using the numerical model. Both models provide a qualitative description of the often cited asymmetric nature of the response and recovery for hyperbolic-type response naked optical film sensors. It is envisaged that the models will help in the interpretation of the response and recovery behaviour exhibited by many naked optical film sensors and might be especially apposite when the analyte is a gas.
Resumo:
The excitation of surface plasmon-polariton (SPP) waveguide modes in subwavelength dielectric ridges deposited on a thin gold film has been characterized and optimized at telecommunication wavelengths. The experimental data on the electromagnetic mode structure obtained using scanning near-field optical microscopy have been directly compared to full vectorial three-dimensional finite element method simulations. Two excitation geometries have been investigated where SPPs are excited outside or inside the dielectric tapered region adjoint to the waveguide. The dependence of the efficiency of the SPP guided mode excitation on the taper opening angle has been measured and modeled. Single-mode guiding and strong lateral mode confinement of dielectric-loaded SPP waveguide modes have been characterized with the near-field measurements and compared to the effective-index method model.
Resumo:
This article reports on an experimental method to fully reconstruct laser-accelerated proton beam parameters called radiochromic film imaging spectroscopy (RIS). RIS allows for the characterization of proton beams concerning real and virtual source size, envelope- and microdivergence, normalized transverse emittance, phase space, and proton spectrum. This technique requires particular targets and a high resolution proton detector. Therefore thin gold foils with a microgrooved rear side were manufactured and characterized. Calibrated GafChromic radiochromic film (RCF) types MD-55, HS, and HD-810 in stack configuration were used as spatial and energy resolved film detectors. The principle of the RCF imaging spectroscopy was demonstrated at four different laser systems. This can be a method to characterize a laser system with respect to its proton-acceleration capability. In addition, an algorithm to calculate the spatial and energy resolved proton distribution has been developed and tested to get a better idea of laser-accelerated proton beams and their energy deposition with respect to further applications.
Resumo:
In hypersonic flight, the prediction of aerodynamic heating and the construction of a proper thermal protection system (TPS) are significantly important. In this study, the method of a film cooling technique, which is already the state of the art in cooling of gas turbine engines, is proposed for a fully reusable and active TPS. Effectiveness of the film cooling scheme to reduce convective heating rates for a blunt-nosed spacecraft flying at Mach number 6.56 and 40 deg angle of attack is investigated numerically. The inflow boundary conditions used the standard values at an altitude of 30 km. The computational domain consists of infinite rows of film cooling holes on the bottom of a blunt-nosed slab. Laminar and several turbulent calculations have been performed and compared. The influence of blowing ratios on the film cooling effectiveness is investigated. The results exhibit that the film cooling technique could be an effective method for an active cooling of blunt-nosed bodies in hypersonic flows.
Resumo:
The role of sodium surface species in the modification of a platinum (Pt) catalyst film supported on 8 mol% yttria-stabilised-zirconia (YSZ) was investigated under a flow of 20 kPa oxygen at 400 °C. Cyclic and linear sweep voltammetry were used to investigate the kinetics of the oxygen charge transfer reaction. The Pt/YSZ systems of both ‘clean’ and variable-coverage sodium-modified catalyst surfaces were also characterised using SEM, XPS and work function measurements using the Kelvin probe technique.
Samples with sodium coverage from 0.5 to 100% were used. It was found that sodium addition modifies the binding energy of oxygen onto the catalyst surface. Cyclic voltammetry experiments showed that higher overpotentials were required for oxygen reduction with increasing sodium coverage. In addition, sodium was found to modify oxygen storage and/or adsorption and diffusion increasing current densities at higher cathodic overpotential. Ex situ XPS measurements showed the presence of sodium hydroxide, carbonate and/or oxide species on the catalyst surface, while the Kelvin probe technique showed a decrease of approximately 250 meV in the work function of samples with more than 50% sodium coverage (compared to a nominally ‘clean’ sample).