912 resultados para design space exploration
Resumo:
In the process of urbanization, natural and semi-natural landscapes are increasingly cherished as open space and recreational resource. Urban rivers are part of this kind of resource and thus play an important role in managing urban resilience and health. Employing the example of Tianjin, this doctoral dissertation research aims at learning to understand how to plan and design for the interface zones between urban water courses and for the land areas adjacent to such water courses. This research also aims at learning how to link waterfront space with other urban space in order to make a recreational space system for the benefit of people. Five questions of this dissertation are: 1) what is the role of rivers in spatial and open space planning? 2) What are the human needs regarding outdoor open space? 3) How do river and water front spatial structures affect people's recreational activities? 4) How to define the recreational service of urban river and waterfront open space? 5) How might answering these question change planning and design of urban open space? Quantitative and qualitative empirical approaches were combined in this study for which literature review and theoretical explorations provide the basis. Empirical investigations were conducted in the city of Tianjin. The quantitative approach includes conducting 267 quantitative interviews, and the qualitative approach includes carrying out field observations and mappings. GIS served to support analysis and visualization of empirical information that was generated through this study. By responding to the five research questions, findings and lessons include the following: 1) In the course of time rivers have gained importance in all levels and scales of spatial planning and decision making. Regarding the development of ecological networks, mainly at national scale, rivers are considered significant linear elements. Regarding regional and comprehensive development, river basins and watersheds are often considered as the structural link for strategic ecological, economic, social and recreational planning. For purposes of urban planning, particularly regarding recreational services in cities, the distribution of urban open spaces often follows the structure of river systems. 2) For the purpose of classifying human recreational needs that relate to outdoor open space Maslow's hierarchy of human needs serves as theoretical basis. The classes include geographical, safety, physiological, social and aesthetic need. These classes serve as references while analyzing river and waterfront open space and other kinds of open space. 3) Regarding the question how river and waterfront spatial structures might affect people's recreational activities, eight different landscape units were identified and compared in the case study area. Considering the thermal conditions of Tianjin, one of these landscape units was identified as affording the optimal spatial arrangement which mostly meets recreational needs. The size and the shape of open space, and the plants present in an open space have been observed as being most relevant regarding recreational activities. 4) Regarding the recreational service of urban river and waterfront open space the results of this research suggest that the recreational service is felt less intensively as the distances between water 183 front and open space user’s places of residence are increasing. As a method for estimating this ‘Service Distance Effect’ the following formula may be used: Y = a*ebx. In this equation Y means the ‘Service Distance’ between homes and open space, and X means the percentage of the people who live within this service distance. Coefficient "a" represents the distance of the residential area nearest to the water front. The coefficient "b" is a comprehensive capability index that refers to the size of the available and suitable recreational area. 5) Answers found to the questions above have implications for the planning and design of urban open space. The results from the quantitative study of recreational services of waterfront open space were applied to the assessment of river-based open space systems. It is recommended that such assessments might be done employing the network analysis function available with any GIS. In addition, several practical planning and designing suggestions are made that would help remedy any insufficient base for satisfying recreational needs. The understanding of recreational need is considered helpful for the proposing planning and designing ideas and for the changing of urban landscapes. In the course of time Tianjin's urban water system has shrunk considerably. At the same time rivers and water courses have shaped Tianjin's urban structure in noticeable ways. In the process of urbanization water has become increasingly important to the citizens and their everyday recreations. Much needs to be changed in order to improve recreational opportunities and to better provide for a livable city, most importantly when considering the increasing number of old people. Suggestions made that are based on results of this study, might be implemented in Tianjin. They are 1) to promote the quality of the waterfront open space and to make all linear waterfront area accessible recreational spaces. Then, 2), it is advisable to advocate the concept of green streets and to combine green streets with river open space in order to form an everyday recreational network. And 3) any sound urban everyday recreational service made cannot rely on only urban rivers; the whole urban structure needs to be improved, including adding small open space and optimize the form of urban communities, finally producing a multi-functional urban recreational network.
Resumo:
In early stages of architectural design, as in other design domains, the language used is often very abstract. In architectural design, for example, architects and their clients use experiential terms such as "private" or "open" to describe spaces. If we are to build programs that can help designers during this early-stage design, we must give those programs the capability to deal with concepts on the level of such abstractions. The work reported in this thesis sought to do that, focusing on two key questions: How are abstract terms such as "private" and "open" translated into physical form? How might one build a tool to assist designers with this process? The Architect's Collaborator (TAC) was built to explore these issues. It is a design assistant that supports iterative design refinement, and that represents and reasons about how experiential qualities are manifested in physical form. Given a starting design and a set of design goals, TAC explores the space of possible designs in search of solutions that satisfy the goals. It employs a strategy we've called dependency-directed redesign: it evaluates a design with respect to a set of goals, then uses an explanation of the evaluation to guide proposal and refinement of repair suggestions; it then carries out the repair suggestions to create new designs. A series of experiments was run to study TAC's behavior. Issues of control structure, goal set size, goal order, and modification operator capabilities were explored. In addition, TAC's use as a design assistant was studied in an experiment using a house in the process of being redesigned. TAC's use as an analysis tool was studied in an experiment using Frank Lloyd Wright's Prairie houses.
Resumo:
The Space Systems, Policy and Architecture Research Consortium (SSPARC) was formed to make substantial progress on problems of national importance. The goals of SSPARC were to: • Provide technologies and methods that will allow the creation of flexible, upgradable space systems, • Create a “clean sheet” approach to space systems architecture determination and design, including the incorporation of risk, uncertainty, and flexibility issues, and • Consider the impact of national space policy on the above. This report covers the last two goals, and demonstrates that the effort was largely successful.
Resumo:
Developments in the statistical analysis of compositional data over the last two decades have made possible a much deeper exploration of the nature of variability, and the possible processes associated with compositional data sets from many disciplines. In this paper we concentrate on geochemical data sets. First we explain how hypotheses of compositional variability may be formulated within the natural sample space, the unit simplex, including useful hypotheses of subcompositional discrimination and specific perturbational change. Then we develop through standard methodology, such as generalised likelihood ratio tests, statistical tools to allow the systematic investigation of a complete lattice of such hypotheses. Some of these tests are simple adaptations of existing multivariate tests but others require special construction. We comment on the use of graphical methods in compositional data analysis and on the ordination of specimens. The recent development of the concept of compositional processes is then explained together with the necessary tools for a staying- in-the-simplex approach, namely compositional singular value decompositions. All these statistical techniques are illustrated for a substantial compositional data set, consisting of 209 major-oxide and rare-element compositions of metamorphosed limestones from the Northeast and Central Highlands of Scotland. Finally we point out a number of unresolved problems in the statistical analysis of compositional processes
Resumo:
The idea of an expressive component in research is important to the architectural industry. The expressive element - the possibility of expressing the qualitative aspects of the world and adding something new to the existing through experiments and proposals - is characteristic for the field. All research environments, in the science tradition and in the humanities, have their characteristics. On the one hand, they live up to certain common scientific and methodological criteria - originality and transparency – and on the other hand, they have different practices, using different methods. Research is ‘coloured’ by traditions and professions, and research in architecture should be coloured too, taking into consideration that the practice of architects stretches from natural science and sociology to art and that the most important way in which the architect achieves new cognition is through work with form and space – drawings, models and completed works. Probably all good design is informed by some kind of research – research- based design. But can research arise from design?
Resumo:
Urban regeneration programmes in the UK over the past 20 years have increasingly focused on attracting investors, middle-class shoppers and visitors by transforming places and creating new consumption spaces. Ensuring that places are safe and are seen to be safe has taken on greater salience as these flows of income are easily disrupted by changing perceptions of fear and the threat of crime. At the same time, new technologies and policing strategies and tactics have been adopted in a number of regeneration areas which seek to establish control over these new urban spaces. Policing space is increasingly about controlling human actions through design, surveillance technologies and codes of conduct and enforcement. Regeneration agencies and the police now work in partnerships to develop their strategies. At its most extreme, this can lead to the creation of zero-tolerance, or what Smith terms 'revanchist', measures aimed at particular social groups in an effort to sanitise space in the interests of capital accumulation. This paper, drawing on an examination of regeneration practices and processes in one of the UK's fastest-growing urban areas, Reading in Berkshire, assesses policing strategies and tactics in the wake of a major regeneration programme. It documents and discusses the discourses of regeneration that have developed in the town and the ways in which new urban spaces have been secured. It argues that, whilst security concerns have become embedded in institutional discourses and practices, the implementation of security measures has been mediated, in part, by the local socio-political relations in and through which they have been developed.
Resumo:
Facilitating the visual exploration of scientific data has received increasing attention in the past decade or so. Especially in life science related application areas the amount of available data has grown at a breath taking pace. In this paper we describe an approach that allows for visual inspection of large collections of molecular compounds. In contrast to classical visualizations of such spaces we incorporate a specific focus of analysis, for example the outcome of a biological experiment such as high throughout screening results. The presented method uses this experimental data to select molecular fragments of the underlying molecules that have interesting properties and uses the resulting space to generate a two dimensional map based on a singular value decomposition algorithm and a self organizing map. Experiments on real datasets show that the resulting visual landscape groups molecules of similar chemical properties in densely connected regions.
Resumo:
This paper describes a novel methodology for observing and analysing collaborative design by using the concepts of cognitive dimensions related to concept-based misfit analysis. The study aims at gaining an insight into support for creative practice of graphical communication in collaborative design processes of designers while sketching within a shared white board and audio conferencing environment. Empirical data on design processes have been obtained from observation of groups of student designers solving an interior space-planning problem of a lounge-diner in a shared virtual environment. The results of the study provide recommendations for the design and development of interactive systems to support such collaborative design activities.
Resumo:
Virtual learning environments (VLEs) would appear to be particular effective in computer-supported collaborative work (CSCW) for active learning. Most research studies looking at computer-supported collaborative design have focused on either synchronous or asynchronous modes of communication, but near-synchronous working has received relatively little attention. Yet it could be argued that near-synchronous communication encourages creative, rhetorical and critical exchanges of ideas, building on each other’s contributions. Furthermore, although many researchers have carried out studies on collaborative design protocol, argumentation and constructive interaction, little is known about the interaction between drawing and dialogue in near-synchronous collaborative design. The paper reports the first stage of an investigation into the requirements for the design and development of interactive systems to support the learning of collaborative design activities. The aim of the study is to understand the collaborative design processes while sketching in a shared white board and audio conferencing media. Empirical data on design processes have been obtained from observation of seven sessions with groups of design students solving an interior space-planning problem of a lounge-diner in a virtual learning environment, Lyceum, an in-house software developed by the Open University to support its students in collaborative learning.
Resumo:
The formulation of a new process-based crop model, the general large-area model (GLAM) for annual crops is presented. The model has been designed to operate on spatial scales commensurate with those of global and regional climate models. It aims to simulate the impact of climate on crop yield. Procedures for model parameter determination and optimisation are described, and demonstrated for the prediction of groundnut (i.e. peanut; Arachis hypogaea L.) yields across India for the period 1966-1989. Optimal parameters (e.g. extinction coefficient, transpiration efficiency, rate of change of harvest index) were stable over space and time, provided the estimate of the yield technology trend was based on the full 24-year period. The model has two location-specific parameters, the planting date, and the yield gap parameter. The latter varies spatially and is determined by calibration. The optimal value varies slightly when different input data are used. The model was tested using a historical data set on a 2.5degrees x 2.5degrees grid to simulate yields. Three sites are examined in detail-grid cells from Gujarat in the west, Andhra Pradesh towards the south, and Uttar Pradesh in the north. Agreement between observed and modelled yield was variable, with correlation coefficients of 0.74, 0.42 and 0, respectively. Skill was highest where the climate signal was greatest, and correlations were comparable to or greater than correlations with seasonal mean rainfall. Yields from all 35 cells were aggregated to simulate all-India yield. The correlation coefficient between observed and simulated yields was 0.76, and the root mean square error was 8.4% of the mean yield. The model can be easily extended to any annual crop for the investigation of the impacts of climate variability (or change) on crop yield over large areas. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Presented herein is an experimental design that allows the effects of several radiative forcing factors on climate to be estimated as precisely as possible from a limited suite of atmosphere-only general circulation model (GCM) integrations. The forcings include the combined effect of observed changes in sea surface temperatures, sea ice extent, stratospheric (volcanic) aerosols, and solar output, plus the individual effects of several anthropogenic forcings. A single linear statistical model is used to estimate the forcing effects, each of which is represented by its global mean radiative forcing. The strong colinearity in time between the various anthropogenic forcings provides a technical problem that is overcome through the design of the experiment. This design uses every combination of anthropogenic forcing rather than having a few highly replicated ensembles, which is more commonly used in climate studies. Not only is this design highly efficient for a given number of integrations, but it also allows the estimation of (nonadditive) interactions between pairs of anthropogenic forcings. The simulated land surface air temperature changes since 1871 have been analyzed. The changes in natural and oceanic forcing, which itself contains some forcing from anthropogenic and natural influences, have the most influence. For the global mean, increasing greenhouse gases and the indirect aerosol effect had the largest anthropogenic effects. It was also found that an interaction between these two anthropogenic effects in the atmosphere-only GCM exists. This interaction is similar in magnitude to the individual effects of changing tropospheric and stratospheric ozone concentrations or to the direct (sulfate) aerosol effect. Various diagnostics are used to evaluate the fit of the statistical model. For the global mean, this shows that the land temperature response is proportional to the global mean radiative forcing, reinforcing the use of radiative forcing as a measure of climate change. The diagnostic tests also show that the linear model was suitable for analyses of land surface air temperature at each GCM grid point. Therefore, the linear model provides precise estimates of the space time signals for all forcing factors under consideration. For simulated 50-hPa temperatures, results show that tropospheric ozone increases have contributed to stratospheric cooling over the twentieth century almost as much as changes in well-mixed greenhouse gases.
Resumo:
This paper deals with the design of optimal multiple gravity assist trajectories with deep space manoeuvres. A pruning method which considers the sequential nature of the problem is presented. The method locates feasible vectors using local optimization and applies a clustering algorithm to find reduced bounding boxes which can be used in a subsequent optimization step. Since multiple local minima remain within the pruned search space, the use of a global optimization method, such as Differential Evolution, is suggested for finding solutions which are likely to be close to the global optimum. Two case studies are presented.
Resumo:
In this paper we present the novel concepts incorporated in a planetary surface exploration rover design that is currently under development. The Multitasking Rover (MTR) aims to demonstrate functionality that will cover many of the current and future needs such as rough-terrain mobility, modularity and upgradeability. The rover system has enhanced mobility characteristics. It operates in conjunction with Science Packs (SPs) and Tool Packs (TPs)-modules attached to the main frame of the rover, which are either special tools or science instruments and alter the operation capabilities of the system.
Resumo:
Differential Evolution (DE) is a tool for efficient optimisation, and it belongs to the class of evolutionary algorithms, which include Evolution Strategies and Genetic Algorithms. DE algorithms work well when the population covers the entire search space, and they have shown to be effective on a large range of classical optimisation problems. However, an undesirable behaviour was detected when all the members of the population are in a basin of attraction of a local optimum (local minimum or local maximum), because in this situation the population cannot escape from it. This paper proposes a modification of the standard mechanisms in DE algorithm in order to change the exploration vs. exploitation balance to improve its behaviour.
Resumo:
Purpose - This paper aims to address some of the needs of present and upcoming rover designs, and introduces novel concepts incorporated in a planetary surface exploration rover design that is currently under development. Design/methodology/approach - The Multitasking Rover (MTR) is a highly re-configurable system that aims to demonstrate functionality that will cover many of the current and future needs such as rough-terrain mobility, modularity and upgradeability. It comprises a surface mobility platform which is highly re-configurable, which offers centre of mass re-allocation and rough terrain stability, and also a set of science/tool packs - individual subsystems encapsulated in packs which the rover picks up, transports and deploys. Findings - Early testing of the suspension system suggests exceptional performance characteristics. Originality/value - Principles employed in the design of the MTR can be used in future rover systems to reduce associated mission costs and at the same time provide multiples the functionality.