1000 resultados para desenvolvimento larval
Resumo:
Diphenism in social bees is essentially contingent on nutrient-induced cellular and systemic physiological responses resulting in divergent gene expression patterns. Analyses of juvenile hormone (JH) titers and functional genomics assays of the insulin-insulin-like signaling (IIS) pathway and its associated branch, target-of-rapamycin (TOR), revealed systemic responses underlying honey bee (Apis mellifera) caste development. Nevertheless, little attention has been paid to cellular metabolic responses. Following up earlier investigations showing major caste differences in oxidative metabolism and mitochondrial physiology, we herein identified honey bee homologs of hypoxia signaling factors, HIF alpha/Sima, HIF beta/Tango and PHD/Fatiga and we investigated their transcript levels throughout critical stages of larval development. Amsima, Amtango and Amfatiga showed correlated transcriptional activity, with two peaks of occurring in both queens and workers, the first one shortly after the last larval molt and the second during the cocoon-spinning phase. Transcript levels for the three genes were consistently higher in workers. As there is no evidence for major microenvironmental differences in oxygen levels within the brood nest area, this appears to be an inherent caste character. Quantitative PCR analyses on worker brain, ovary, and leg imaginal discs showed that these tissues differ in transcript levels. Being a highly conserved pathway and linked to IIS/TOR, the hypoxia gene expression pattern seen in honey bee larvae denotes that the hypoxia pathway has undergone a transformation, at least during larval development, from a response to environmental oxygen concentrations to an endogenous regulatory factor in the diphenic development of honey bee larvae. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The present study consisted of two experiments that evaluated experimental infections of Haemaphysalis leporispalustris ticks by a Brazilian strain of Rickettsia rickettsii, and their effect on tick biology. In experiment I, ticks were exposed to R. rickettsii during the larval, nymphal or adult stages by feeding on rabbits (Oryctolagus cuniculus) needle-inoculated with R. rickettsii, and thereafter reared on uninfected rabbits for the entire next tick generation. Regardless of the tick stage that acquired the infection, all subsequent tick stages were shown to be infected by PCR (infection rates varying from 1.3 to 41.7%), and were able to transmit R. rickettsii to uninfected rabbits, as demonstrated by rabbit seroconversion, guinea pig inoculation with rabbit blood, and PCR on rabbit blood. In Experiment II, ticks were exposed to R. rickettsii during the larval stage by feeding on rabbits co-infested with R. rickettsii-infected adult ticks, and thereafter reared on uninfected rabbits until the next generation of larvae. Again, all subsequent tick stages were shown to be infected by PCR (infection rates varying from 3.0 to 40.0%), and were able to transmit R. rickettsii to uninfected rabbits. Thus, it was demonstrated that larvae, nymphs, and adults of H. leporispalustris were able to acquire and maintain the R. rickettsii infection by transstadial and transovarial transmissions within the tick population, with active transmission of the bacterium to susceptible rabbits by all parasitic stages. Analyses of biological parameters of uninfected and R. rickettsii-infected tick lineages were performed in order to evaluate possible deleterious effects of R. rickettsii to the infected tick lineages. Surprisingly, all but one of the four R. rickettsii-experimental groups of the present study showed overall better biological performance than their sibling uninfected control ticks. Results of the present study showed that H. leporispalustris could support infection by a high virulent strain of R. rickettsii for at least two generations, in which infected tick lineages tended to have better performance than uninfected ticks. Our results support a possible role of H. leporispalustris in the enzootic maintenance of R. rickettsii in Latin America, as previously suggested by earlier works.
Resumo:
In a recent ecological study of the ticks on animal trails within an area of Atlantic rainforest in south-eastern Brazil, Amblyomma aureolatum, A. brasiliense, A. incisum, A. ovale and Haemaphysalis juxtakochi were found questing on the vegetation. Most of the ticks recorded by a small, man-made dam on the forest border were A. dubitatum but a few A. brasiliense and A. cajennense, one A. incisum and one H. juxtakochi were also found. The seasonal activity of the ticks indicated that A. incisum and A. brasiliense had one generation/year. On the animal trails, most tick species and stages quested on the vegetation at a height of 30-40 cm above ground level. The questing larvae and adults of A. incisum tended to be found higher, however, with the greatest numbers recorded 40-50 cm (larvae) or 60-70 cm (adults) above ground level. Most of the adult ticks (81.1% -100%), nymphs (78.6%-100%) and larval clusters (100%) found on a forest trail remained questing at the same location over a 24-h period. Carbon-dioxide traps in the rainforest attracted, 50% of the ticks observed questing on the nearby vegetation and, curiously, the CO(2) traps set deep in the forest attracted far fewer ticks than similar traps set by the dam. The ecological relationships between the ticks, their hosts and the rainforest environment are discussed.
Resumo:
The present study was performed in an area endemic for Brazilian spotted fever (BSF) in Juiz de Fora, state of Minas Gerais, Brazil, during the years 2007 and 2008, when fatal cases of BSF (caused by Rickettsia rickettsii) were reported. Adult ticks (Acari: Ixodidae) identified as Rhipicephalus sanguineus (Latreille) and Amblyomma cajennense (Fabricius) were collected from dogs and horses, respectively, and tested by polymerase chain reaction (PCR). Overall, 13.1% of the Rh. sanguineus ticks and none of the A. cajennense were found to be infected with R. rickettsii. Two isolates of R. rickettsii were successfully established in Vero cell culture from two Rh. sanguineus ticks. An indirect immunofluorescence assay (IFA) using R. rickettsii antigens detected blood serological reaction to R. rickettsii in 67.9% (53/78) of dogs and 41.0% (16/39) of horses living in the study area. Larval offspring from two Rh. sanguineus engorged females, naturally infected by R. rickettsii, were reared to adult stage in the laboratory. All active stages (larvae, nymphs, adults) remained 100% infected by R. rickettsii, which was efficiently transmitted to naive rabbits. Overall, the results of the present study indicate a potential risk for transmission of R. rickettsii to humans by Rh. sanguineus, an occurrence yet to be documented in Brazil.
Resumo:
The present study evaluated the reproductive compatibility of the crosses between adult ticks of the following three geographically different populations of Amblyomma cajennense: State of So Paulo (SP), southeastern Brazil; State of Rondnia (RO), northern Brazil; and Colombia (CO). In addition, crosses between A. cajennense ticks from Argentina (AR) and SP ticks were also performed. The Argentinean population (AR) was compatible with SP because their crosses resulted in high % egg hatching (mean values ranging from 71.5 to 93.5%), similarly to all homologous (intrapopulational) crosses. In contrast, the tick populations SP, RO, and CO were shown to be incompatible with each other, since their heterologous (interpopulational) crosses always resulted in very low % egg hatching (range: 0-5%). The F(1) larval offspring derived from some of these females that yielded 5% egg hatching were reared until the F(1) adult stage. In all cases, only adult females molted from engorged nymphs. These F(1) females were likely to be a product of thelytokous parthenogenesis of the SP, RO, and CO females that were used in the heterologous crosses. Reproductive incompatibility is not expected to occur between different populations of a single species. Thus, our results suggest that the taxon A. cajennense might be represented by a complex of different species, whereas SP and AR ticks might represent a single species. Further populational genetic studies, coupled with extensive morphological analyses, are needed to clarify and determine a possible complex of valid species that might have been classified under the taxon A. cajennense.
Resumo:
Carios mimon is an argasid tick common on Chiroptera, originally described from larvae collected on bats Mimon crenulatum from Bolivia and Eptesicus brasiliensis from Uruguay. Later it was also registered from Argentina and recently included among the Brazilian tick fauna. In Brazil, this species is very aggressive to man, resulting in intense inflammatory response and pain. It is known only by the larval description and its morphology resembles that from other species currently included into the genus Carios, formerly classified into the subgenus Alectorobius, genus Ornithodoros. Here we describe adults and redescribe the larva of C. mimon, based on light and scanning electron microscopy. Remarks about its morphological similarity with other species of this genus are also discussed. Molecular analysis inferred from a portion of the 16S rRNA mitochondrial gene placed C. mimon in a cluster supported by maximal bootstrap value (100%) with other argasid species (mostly bat parasites in the New World), which have been classified into either the genus Ornithodoros or Carios, depending on the Argasidae classification adopted by different authors.
Resumo:
Together with the larval stage, the nymphal stage of ticks of the genus Amblyomma are the most aggressive ticks for humans entering areas inhabited by wildlife and some domestic animals in Brazil. However, due to the absence of morphological descriptions of the nymphal stage of most Brazilian Amblyomma species, plus the lack of an identification key, little or nothing is known about the life history of Amblyomma spp. nymphs in the country. In the present study, morphological description of the nymphal stage, illustrating important external characters through scanning electron microscopy, is provided for nymphs of 15 Amblyomma species that occur in Brazil, for which the nymphal stage had never been described: A. aureolatum, A. auricularium, A. calcaratum, A. coelebs, A. fuscum, A. humerale, A. incisum, A. latepunctatum, A. naponense, A. nodosum, A. ovate, A. pacae, A. pseudoconcolor, A. scalpturatum, A. varium. In addition, the nymphal stage of 12 Amblyomma species, which had been previously described, are redescribed: A. brasiliense, A. cajennense, A. dissimile, A. dubitatum, A. longirostre, A. oblongoguttatum, A. parked, A. parvum, A. romitii, A. rotundatum, A. tigrinum, A. triste. The descriptions and redescriptions totalized 27 species. Only 2 species (A. geayi, A. goeldii) out of the 29 Amblyomma species established in Brazil are not included in the present study. A dichotomous identification key is included to support taxonomic identification of the nymphal stage of 27 Amblyomma species established in Brazil. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
The life cycle of Ixodes luciae was evaluated for five consecutive generations in the laboratory. Wild mice Calomys callosus and laboratory rats Rattus norvegicus were used as hosts for larvae and nymphs. For adult ticks, opossums Didelphis aurita were used as hosts. Off-host developmental periods were observed in an incubator at 27A degrees C and 95% RH. The life cycle of I. luciae lasted 95-97 days, excluding prefeeding periods. C. callosus, one of the natural host species for I. luciae immature stages, was shown to be much more suitable than the artificial host R. norvegicus. Significantly (P < 0.05), more larvae and nymphs successfully fed on C. callosus than on R. norvegicus. When tick-na < ve C. callosus were exposed to three consecutive larval infestations at 24-day intervals, recovery of engorged larvae were greater in the second and third infestations, indicating that previous infestations did not induce acquired resistance to ticks. Larval feeding period typically varied from 5 to 10 days on R. norvegicus, but was significantly (P < 0.05), longer on C. callosus (range, 7-34 days). The majority (71.7%) of I. luciae adult females successfully fed and oviposited after exposed to D. aurita. Mean engorged weight (581.9 mg; range, 237.1-796.0 mg) of these females were much higher than those previously reported for other New World Ixodes species. Our results are in accordance to the current literature that appoints opossums Didelphidae and small rodents (e.g., C. callosus) natural hosts for I. luciae immature and adult stages, respectively.
Resumo:
Males of Helicoverpa punctigera (Wallengren) show considerable variation in the number of femoral scales on the prothoracic legs. Such intraspecific variation in adult morphology could indicate the presence of undetected sibling species, or it may be related to larval diet. Helicoverpa putactigera is polyphagous, and different host plant species are likely to represent diets of different quality. Femoral lengths and the numbers of femoral scales on the prothoracic legs were therefore determined from: (i) individuals that had been collected as larvae from various host species in the field; and (ii) individuals that had been laboratory-reared, in split-family tests, on different diets, namely cotton, lucerne, sowthistle and artificial diet. Host plant species (and therefore presumably diet quality) influenced femoral length of H. punctigera males and, perhaps in conjunction with this, the number of femoral scales on the fore leg. The rearing experiment indicated, in addition, that the effect of host plant quality varies with larval stage, and that the pattern of this variation across the immature stages is dependent on host plant species. The recorded variation in the morphology of field-collected H. punctigera males is therefore most readily explained as a consequence of different individuals developing (at least for most of their larval life) on different host plant species, with diet quality varying significantly with species. The relevance of these results for insect developmental studies and evolutionary interpretations of host relationships is outlined.
Resumo:
The drosophilid fauna in Australia offers an important study system for evolutionary studies. Larval hosts are unknown for most species, however, and this imposes serious limits to understanding their ecological context. The present paper reports the first systematic, large-scale field survey of potential larval hosts to be conducted, in order to obtain an overview of the host utilisation patterns of Australian drosophilids. Potential hosts (mostly fruit and fungi) were collected from different vegetation types in northern and eastern Australia. Host data were obtained for 81 drosophilid species from 17 genera (or 28% of the known Fauna). Most genera were restricted to either fruit or fungi, although Scaptodrosophila spp. and Drosophila spp. were recorded from fruit, fungi, flowers and compost, and Drosophila spp. also emerged from the parasitic plant Balanophora fungosa. There was no evidence that use of either fruit or fungi was correlated to host phylogeny. Drosophilids emerged from hosts collected from all sampled vegetation types (rainforest, open forest, heath and domestic environments). Vegetation type influenced drosophilid diversity, both by affecting host availability and because some drosophilid species apparently restricted their search for hosts to particular vegetation types.
Resumo:
Early development and metamorphosis of Reniera sp., a haplosclerid demosponge, have been examined to determine how gastrulation occurs in this species, and whether there is an inversion of the primary germ layers at metamorphosis. Embryogenesis occurs by unequal cleavage of blastomeres to form a solid blastula consisting micro- and macromeres; multipolar migration of the micromeres to the surface of the embryo results in a bi-layered embryo and is interpreted as gastrulation. Polarity of the embryo is determined by the movement of pigment-containing micromeres to one pole of the embryo; this pole later becomes the posterior pole of the swimming larva. The bi-layered larva has a fully differentiated monociliated outer cell layer, and a solid interior of various cell types surrounded by dense collagen. The pigmented cells at the posterior pole give rise to long cilia that are capable of responding to environmental stimuli. Larvae settle on their anterior pole. Fluorescent labeling of the monociliated outer cell layer with a cell-lineage marker (CMFDA) demonstrates that the monociliated cells resorb their cilia, migrate inwards, and transdifferentiate into the choanocytes of the juvenile sponge, and into other amoeboid cells. The development of the flagellated choanocytes and other cells in the juvenile from the monociliated outer layer of this sponge's larva is interpreted as the dedifferentiation of fully differentiated larval cells-a process seen during the metamorphosis of other ciliated invertebrate larvae-not as inversion of the primary germ layers. These results suggest that the sequences of development in this haplosclerid demosponge are not very different than those observed in many cnidarians.
Resumo:
The principal malaria vector in the Philippines, Anopheles flavirostris (Ludlow) (Diptera: Culicidae), is regarded as 'shade-loving' for its breeding sites, i.e. larval habitats. This long-standing belief, based on circumstantial observations rather than ecological analysis, has guided larval control methods such as 'stream-clearing' or the removal of riparian vegetation, to reduce the local abundance of An. flavirostris . We measured the distribution and abundance of An. flavirostris larvae in relation to canopy vegetation cover along a stream in Quezon Province, the Philippines. Estimates of canopy openness and light measurements were obtained by an approximation method that used simplified assumptions about the sun, and by hemispherical photographs analysed using the program hemiphot(C) . The location of larvae, shade and other landscape features was incorporated into a geographical information system (GIS) analysis. Early larval instars of An. flavirostris were found to be clustered and more often present in shadier sites, whereas abundance was higher in sunnier sites. For later instars, distribution was more evenly dispersed and only weakly related to shade. The best predictor of late-instar larvae was the density of early instars. Distribution and abundance of larvae were related over time (24 days). This pattern indicates favoured areas for oviposition and adult emergence, and may be predictable. Canopy measurements by the approximation method correlated better with larval abundance than hemispherical photography, being economical and practical for field use. Whereas shade or shade-related factors apparently have effects on larval distribution of An. flavirostris , they do not explain it completely. Until more is known about the bionomics of this vector and the efficacy and environmental effects of stream-clearing, we recommend caution in the use of this larval control method.
Resumo:
We report the spatial expression patterns of five anterior Hox genes during larval development of the gastropod mollusc Haliotis asinina, an unsegmented spiralian lophotrochozoan. Molecular alignments and phylogenetic analysis indicate that these genes are homologues of Drosophila HOM-C genes labial, proboscipedia, zen, Deformed, and Sex combs reduced, the abalone genes are named Has-Hox1, -Hox2, -Hox3, -Hox4, and -Hox5. Has-Hox transcripts are first detected in the free-swimming trochophore larval stage- and restricted to the posttrochal ectoderm. Has-Hox2, -Hox3, and -Hox4 are expressed in bilaterally symmetrical and overlapping patterns in presumptive neuroectodermal cells on the ventral side of the trochophore. Has-Hox1 expression is restricted to a ring of cells on the dorsoposterior surface, corresponding to the outer mantle edge where new larval shell is being synthesized. There appears to be little change in the expression domains of these Has-Hox genes in pre- and posttorsional veliger larvae, with expression maintained in ectodermal and neuroectodermal tissues. Has-Hox2, -Hox3, -Hox4, and-Hox5 appear to be expressed in a colinear manner in the ganglia and connectives in the twisted nervous system. This pattern is not evident in older larvae. Has-Hox1 and-Hox4 are expressed in the margin of the mantle in the posttorsional veliger, suggesting that Hox genes play a role in gastropod shell formation.
Resumo:
O ??ndice de Desenvolvimento da Educa????o B??sica (Ideb) ?? um indicador que combina informa????es de fluxo e de desempenho dos alunos, criado para promover um sistema de accountability visando a melhoria da qualidade da educa????o no pa??s. Ao elaborar metas detalhadas para cada rede e escola ??? com as quais governadores e prefeitos se comprometeram por meio do Compromisso Todos Pela Educa????o ??? ao calcular e divulgar amplamente os resultados do Ideb, o Instituto Nacional de Estudos e Pesquisas Educacionais An??sio Teixeira (Inep) possibilitou que os atores educacionais pudessem ser responsabilizados pelos resultados de sua unidade e que o Minist??rio da Educa????o (MEC) identificasse e premiasse as escolas que atingem as metas, mas tamb??m oferecesse assist??ncia t??cnica e financeira para as redes com piores resultados. Entre os principais resultados j?? alcan??ados, pode-se destacar que o Ideb do pa??s para os anos iniciais do ensino fundamental cresceu de 3,8, em 2005, para 4,2, em 2007
Resumo:
Em dezembro de 2001, o Proeta foi criado pela Empresa Brasileira de Pesquisa Agropecu??ria (Embrapa) com apoio financeiro do Fundo Multilateral de Investimentos do Banco Interamericano de Desenvolvimento (Fumin/BID), por meio de um acordo de coopera????o t??cnica n??o-reembols??vel. O programa tem o objetivo de contribuir para a transfer??ncia de tecnologias e conhecimentos gerados pela Embrapa para empreendimentos de base tecnol??gica, mediante a utiliza????o do processo de incuba????o de empresas. Para concretizar a iniciativa, foram estabelecidas experi??ncias-piloto em cinco unidades de pesquisa da Embrapa, estrategicamente situadas nas regi??es Nordeste, Centro-Oeste e Sudeste. Entre os resultados e avan??os obtidos merecem destaque 21 tecnologias disponibilizadas, 14 conv??nios firmados com incubadoras, 16 propostas de neg??cios apresentadas, 14 empresas pr??-selecionadas e incubadas, e uma empresa graduada. A consolida????o das alian??as e parcerias no processo de incuba????o resultou em um sistema de inova????o que auxilia o desenvolvimento sustent??vel da cadeia produtiva do agroneg??cio, gerando benef??cios para a sociedade em geral