628 resultados para dentate gyrus


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Navigated transcranial magnetic stimulation (TMS) combined with diffusion-weighted magnetic resonance imaging (DW-MRI) and tractography allows investigating functional anatomy of the human brain with high precision. Here we demonstrate that working memory (WM) processing of tactile temporal information is facilitated by delivering a single TMS pulse to the middle frontal gyrus (MFG) during memory maintenance. Facilitation was obtained only with a TMS pulse applied to a location of the MFG with anatomical connectivity to the primary somatosensory cortex (S1). TMS improved tactile WM also when distractive tactile stimuli interfered with memory maintenance. Moreover, TMS to the same MFG site attenuated somatosensory evoked responses (SEPs). The results suggest that the TMS-induced memory improvement is explained by increased top-down suppression of interfering sensory processing in S1 via the MFG-S1 link. These results demonstrate an anatomical and functional network that is involved in maintenance of tactile temporal WM. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To explore the possible abnormal resting-state activity in patients with obsessive-compulsive disorder (OCD), the regional homogeneity (ReHo) of 22 pairs of patients and well-matched healthy controls was calculated. Compared with controls, the patients showed higher ReHo in the left anterior cingulate cortex, but lower ReHo in the left inferior temporal gyrus. These findings supported the abnormal resting-state brain activity in drug-naive OCD patients. No significant correlations between ReHo value and four clinical characteristics were found, suggesting that abnormal ReHo might be trait-related in OCD. NeuroReport 21:786-790 (C) 2010 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In economic decision making, outcomes are described in terms of risk (uncertain outcomes with certain probabilities) and ambiguity (uncertain outcomes with uncertain probabilities). Humans are more averse to ambiguity than to risk, with a distinct neural system suggested as mediating this effect. However, there has been no clear disambiguation of activity related to decisions themselves from perceptual processing of ambiguity. In a functional magnetic resonance imaging (fMRI) experiment, we contrasted ambiguity, defined as a lack of information about outcome probabilities, to risk, where outcome probabilities are known, or ignorance, where outcomes are completely unknown and unknowable. We modified previously learned pavlovian CS+ stimuli such that they became an ambiguous cue and contrasted evoked brain activity both with an unmodified predictive CS+ (risky cue), and a cue that conveyed no information about outcome probabilities (ignorance cue). Compared with risk, ambiguous cues elicited activity in posterior inferior frontal gyrus and posterior parietal cortex during outcome anticipation. Furthermore, a similar set of regions was activated when ambiguous cues were compared with ignorance cues. Thus, regions previously shown to be engaged by decisions about ambiguous rewarding outcomes are also engaged by ambiguous outcome prediction in the context of aversive outcomes. Moreover, activation in these regions was seen even when no actual decision is made. Our findings suggest that these regions subserve a general function of contextual analysis when search for hidden information during outcome anticipation is both necessary and meaningful.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through tuning the length of flexible bis(triazole) ligands and different metal ion coordination geometries, four Wells-Dawson polyoxoanion-based hybrid compounds, [Cu-6(btp)(3)(P2W18O62)] center dot 3H(2)O (1) (btp = 1,3-bis(1,2,4-triazol-1-yl)propane), [Cu-6(btb)(3)((P2W18O62) center dot 2H(2)O (2), [Cu-3(btb)(6)(P2W18O62)] center dot 6H(2)O (btb = 1,4-bis(1,2,4-triazol-1-yl)butane) (3), and [Cu-3(btx)(5.5)((P2W18O62) center dot 4H(2)O (btx = 1,6-bis(1,2,4-triazol-1-yl)hexane) (4), were synthesized and structurally characterized. in compound 1, the metal-organic motif exhibits a ladder-like chain, which is further fused by the ennead-dentate [P2W18O62](6-) anions to construct a 3D structure. In compound 2, the metal-organic motif exhibits an interesting Cu-btb grid layer, and the ennead-dentate polyoxoanions are sandwiched by two Cu-btb layers to construct a 3D structure

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption of dopamine (DA) molecules on gold and their interactions with Fe3+ were studied by a microcantilever in a flow cell. The microcantilever bent toward the Au side with the adsorption of DA due to the change Of Surface stress induced by the intermolecular hydrogen bonds of DA or the charge transfer effect between adsorbates and the Substrate. The interaction process between DA adsorbates and Fe3+ was revealed by the deflection curves of microcantilever. As indicated by the appearance of a variation during the decline of curves, two steps were observed in the curve at relative high concentrations of Fe3+. In this case, Fe3+ reacted with DA molecules only in the outer layers and the complexes removed with solution. Then Fe3+ reacted further with DA molecules forming the surface complex in the first layer next to the gold. At this stage, the stability Of Surface complexes was time dependent, i.e., unstable initially and stable finally. This may be due to the surface complexes change from mono-dentate to bi-dentate complexes. In another case, i.e., at relative low concentration of Fe3+, only the first step was observed as indicated by the absence of a variation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reading is an important human-specific skill obtained through extensive learning experience and is reliance on the ability to rapidly recognize single words. According to the behavioral studies, the most important stage of reading is the representation of “visual word form”, which is independent on surface visual features of the reading materials. The prelexical visual word form representation is characterized by the abstractive and highly effective and precise processing. Neuroimaging and neuropsychological studies have investigated the neural basis underlying the visual word form processing. On the basis of summary of the existing literature, the current thesis aimed to address three fundamental questions involving neural basis of word recognition. First, is there a dedicated neural network that is specialized for word recognition? Second, is the orthographic information represented in the putative word/character selective region (VWFA)? Third, what is the role of reading experience in the genesis of the VWFA, is experience a main driver to shape VWFA instead of evolutionary selectivity? Nineteen Chinese literate volunteers, 5 Chinese illiterates and 4 native English speakers participated in this study, and performed perceptual tasks during fMRI scanning. To address the first question, we compared the differential responses to three categories of visual objects, i.e., faces, line drawings of objects and Chinese characters, and defined the region of interesting (ROI) for the next experiment. To address the second question, Chinese character orthography was manipulated to reveal possible differential responses to real characters, false characters, radical combinations, and stroke combinations in the regions defined by the first experiment. To examine the role of reading experience in genesis of specialization for character, the responses for unfamiliar Chinese characters in Chinese illiterates and native English speakers were compared with that in the Chinese literates, and tracked the change in cortical activation after a short-term reading training in the illiterates. Data were analyzed in two dimensions. Both BOLD signal amplitude and spatial distribution pattern among multi-voxels were used to systematically investigate the responsiveness of the left fusiform gyrus to Chinese characters. Our results provide strong and clear evidence for the existence of functionally specialized regions in the human ventral occipital-temporal cortex. In the skilled readers a region specialized for written words could be consistently found in the lateral part of the left fusiform gyrus, line drawings in the median part and faces in the middle. Our results further show that spatial distribution analysis, a method that was not commonly used in neuroimaging of reading, appears to be a more effective measurement for category specialization for visual objects processing. Although we failed to provide evidence that VWFA processes orthographic information in terms of signal intensitiy, we do show that response pattern of real characters and radical collections in this area is different from that of false characters and random stroke combinations. Our last set of experiments suggests that the selective bias to reading material is clearly experience dependent. The response to unknown characters in both English speakers/readers and Chinese illiterates is fundamentally different from that of the skilled Chinese readers. The response pattern for unknown characters is more similar to that for line drawings rather as a weak version of character in skilled Chinese readers. Short-term training is not sufficient to produce VWFA bias even when tested with learned characters, rather the learned characters generated a overall upward shift of the activation of the left fusiform region. Formation of a dedicated region specialized for visual word/character might depend on long-term extensive reading experience, or there might be a critical period for reading acquisition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of functional neuroimaging studies with skilled readers consistently showed activation to visual words in the left mid-fusiform cortex in occipitotemporal sulcus (LMFC-OTS). Neuropsychological studies also showed that lesions at left ventral occipitotemporal areas result in impairment in visual word processing. Based on these empirical observations and some theoretical speculations, a few researchers postulated that the LMFC-OTS is responsible for instant parallel and holistic extraction of the abstract representation of letter strings, and labeled this piece of cortex as “visual word form area” (VWFA). Nonetheless, functional neuroimaging studies alone is basically a correlative rather than causal approach, and lesions in the previous studies were typically not constrained within LMFC-OTS but also involving other brain regions beyond this area. Given these limitations, it remains unanswered for three fundamental questions: is LMFC-OTS necessary for visual word processing? is this functionally selective for visual word processing while unnecessary for processing of non-visual word stimuli? what are its function properties in visual word processing? This thesis aimed to address these questions through a series of neuropsychological, anatomical and functional MRI experiments in four patients with different degrees of impairments in the left fusiform gyrus. Necessity: Detailed analysis of anatomical brain images revealed that the four patients had differential foci of brain infarction. Specifically, the LMFC-OTS was damaged in one patient, while it remained intact in the other three. Neuropsychological experiments showed that the patient with lesions in the LMFC-OTS had severe impairments in reading aloud and recognizing Chinese characters, i.e., pure alexia. The patient with intact LMFC-OTS but information from the left visual field (LVF) was blocked due to lesions in the splenium of corpus callosum, showed impairment in Chinese characters recognition when the stimuli were presented in the LVF but not in the RVF, i.e. left hemialexia. In contrast, the other two patients with intact LMFC-OTS had normal function in processing Chinese characters. The fMRI experiments demonstrated that there was no significant activation to Chinese characters in the LMFC-OTS of the pure alexic patient and of the patient with left hemialexia when the stimuli were presented in the LVF. On the other hand, this patient, when Chinese characters were presented in right visual field, and the other two with intact LMFC-OTS had activation in the LMFC-OTS. These results together point to the necessity of the LMFC-OTS for Chinese character processing. Selectivity: We tested selectivity of the LMFC-OTS for visual word processing through systematically examining the patients’ ability for processing visual vs. auditory words, and word vs. non-word visual stimuli, such as faces, objects and colors. Results showed that the pure alexic patients could normally process auditory words (expression, understanding and repetition of orally presented words) and non-word visual stimuli (faces, objects, colors and numbers). Although the patient showed some impairments in naming faces, objects and colors, his performance scores were only slightly lower or not significantly different relative to those of the patients with intact LMFC-OTS. These data provide compelling evidence that the LMFC-OTS is not requisite for processing non-visual word stimuli, thus has selectivity for visual word processing. Functional properties: With tasks involving multiple levels and aspects of word processing, including Chinese character reading, phonological judgment, semantic judgment, identity judgment of abstract visual word representation, lexical decision, perceptual judgment of visual word appearance, and dictation, copying, voluntary writing, etc., we attempted to reveal the most critical dysfunction caused by damage in the LMFC-OTS, thus to clarify the most essential function of this region. Results showed that in addition to dysfunctions in Chinese character reading, phonological and semantic judgment, the patient with lesions at LMFC-OTS failed to judge correctly whether two characters (including compound and simple characters) with different surface features (e.g., different fonts, printed vs. handwritten vs. calligraphy styles, simplified characters vs. traditional characters, different orientations of strokes or whole characters) had the same abstract representation. The patient initially showed severe impairments in processing both simple characters and compound characters. He could only copy a compound character in a stroke-by-stroke manner, but not by character-by-character or even by radical-by-radical manners. During the recovery process, namely five months later, the patient could complete the abstract representation tasks of simple characters, but showed no improvement for compound characters. However, he then could copy compound characters in a radical-by-radical manner. Furthermore, it seems that the recovery of copying paralleled to that of judgment of abstract representation. These observations indicate that lesions of the LMFC-OTS in the pure alexic patients caused several damage in the ability of extracting the abstract representation from lower level units to higher level units, and the patient had especial difficulty to extract the abstract representation of whole character from its secondary units (e.g., radicals or single characters) and this ability was resistant to recover from impairment. Therefore, the LMFC-OTS appears to be responsible for the multilevel (particularly higher levels) abstract representations of visual word form. Successful extraction seems independent on access to phonological and semantic information, given the alexic patient showed severe impairments in reading aloud and semantic processing on simple characters while maintenance of intact judgment on their abstract representation. However, it is also possible that the interaction between the abstract representation and its related information e.g. phonological and semantic information was damaged as well in this patient. Taken together, we conclude that: 1) the LMFC-OTS is necessary for Chinese character processing, 2) it is selective for Chinese character processing, and 3) its critical function is to extract multiple levels of abstract representation of visual word and possibly to transmit it to phonological and semantic systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Schizophrenia is a heritable disorder. However, molecular genetics and related research area have not unmasked the nature and mechanisms of this disorder. Therefore, many researchers begin to explore the pathology mechanism from other approaches. High-risk study is one of the promising approaches. In this study, we mainly focused on facial emotion perception in schizophrenia and their non-psychotic first-degree relatives, and attempted to explore whether facial emotion perception is the potential biological marker of schizophrenia. This dissertation comprises 4 studies. In the first study, we conducted a meta-analysis on behavioral data of facial emotion perception in schizophrenia. Our findings showed that patients demonstrated general deficits in both facial emotion perception and facial processing tasks. In the second study, sixty-nine patients with schizophrenia and 56 of their first-degree relatives (33 parents and 23 siblings), and 92 healthy controls (67 younger and 25 older healthy controls) completed a set of facial emotion perception tasks. The results validated that patients with schizophrenia displayed general deficits in facial emotion perception. Study two also demonstrated that siblings of patients performed equally well compared to the corresponding younger healthy controls in all the facial emotion perception tasks, while the parents of patients behaved significantly worse than the corresponding older healthy controls in the composite index of facial emotion perception tasks. The results suggest that relatives of patients display more severely declining in facial emotion perception with the increasing of age. In the third study, we used an automated voxel-wise technique, activation likelihood estimation (ALE) to provide an objective, quantitative evaluation of facial emotion processing in schizophrenia. Our findings demonstrated a marked under-recruitment of the amygdala, accompanied by a substantial limitation in activation in schizophrenia throughout a ventral temporal-basal ganglia-prefrontal cortex ‘social-brain’ system may be central to the difficulties patients experience when processing facial emotion. In the last study, we did an fMRI study about facial emotion perception in 12 patients with schizophrenia, 12 non-psychotic siblings of patients and 12 healthy controls. The results suggest that siblings of patients demonstrate abnormal activation in a variety of brain areas, including prefrontal gyrus, insula, parahippocampal gyrus and superior temporal gyrus. Taken together, the current findings suggest facial emotion perception may be a potential biological marker of schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although studies on placebo effect proved the placebo expectation established by pain-alleviating treatment could significantly alleviate later pain perception, or the placebo expectation established by anxiety-reducing treatment could significantly reduce the intensity of induced negative feelings, it is still unclear whether or not the placebo effect can occur in a transferable manner. That is, we still don’t know if the placebo expectation derived from pain-alleviating can significantly reduce later negative emotional arousal or not. Experiment 1: We compared the effect of the verbal expectation (purely verbal induction and without pain-alleviating reinforcement) with the reinforced expectation (building the belief in the placebo’s ataractic efficiency on unpleasant picture processing by secret reduction of the intensity of the pain-evoking stimulus) on the negative emotion. The results showed that the expectation, which was reinforced by actual analgesia, was transferable and could produce significant placebo effect on negative emotional arousal. However, the expectation that was merely induced by verbal instruction did not have such power. Experiment 2 both examined the direct analgesic effect of the placebo on the sensory pain (how strong is the pain stimulus) and emotional pain (how disturbing is the pain stimulus) and the transferable ataractic effect of the placebo on the negative emotion (how disturbing is the emotional picture stimulus), and further proved that the placebo expectation that was established from pain-reducing reinforcement not only induced significant placebo effect on pain, but also significant placebo effect on unpleasant feeling. These results support the viewpoint that the reduction of affective pain based on the conditioning mechanism plays an important role in the placebo analgesia, but can’t explain the transferred placebo effect on visual unpleasantness. Experiment 3 continued to use the paradigm of the reinforced expectation group and recorded the EEG activities, the data showed that the transferable placebo treatment was accompanied with decreased P2 amplitude and increased N2 distributed, and significant differences between the transferable placebo condition and the control condition (i.e., P2 and N2) were observed within the first 150-300 ms, a duration brief enough to rule out the possibility that differences between the two conditions merely reflect a bias “to try to please the investigator. In Experiment 4, we selected the placebo responders in the pre-experiment and let them to go through the formal fMRI scan. The results found that the transferable placebo treatment reduced the negative emotional response, emotion-responsive regions such as the amygdala, insula, anterior cingulate cortex and the thalamus showed an attenuated activation. And in the placebo condition, there was an enhanced activation in the subcollosal gyrus, which may be involved in emotional regulation. In conclusion, the transferable placebo treatment induced the reliable placebo effect on the behavior, EEG activity and bold signal, and we attempted to discuss the pychophysiological mechanism based on the positive expectancy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study used Dynamical Causal Modeling (DCM) to reveal the influence of difficult to decompose Chinese characters on the effective connectivity of “where” and “what” visual stream。 Chunk decomposition is to decompose the familiar items to their components and then to make up new items with the decomposed components。 Some previous studies with eye movements and brain image had revealed that the chunk decomposition was involved visual-spatial information process, and suggested that “what” and “where” visual streams contributed to the course of chunk decomposition。 However, how they worked to complete the chunk decomposition task is still unknown。 The present study has two factors, familiarity and tightness of the spatial structures, each with 2 levels: real words vs. pseudowords and tight chunks vs. loose chunks。 The results indicates that in the loose conditions, familiarity increases the effective connectivity of “where ” stream, while in the pseudowords conditions, tightness of the spatial structures increases the effective connectivity of both “where” and “what” streams, and familiarity and tightness combined to increase not only both the “what” and “where” streams, but also the effective connectivity from the inferior temporal gyrus to the superior parietal lobule.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A neural model is described of how adaptively timed reinforcement learning occurs. The adaptive timing circuit is suggested to exist in the hippocampus, and to involve convergence of dentate granule cells on CA3 pyramidal cells, and NMDA receptors. This circuit forms part of a model neural system for the coordinated control of recognition learning, reinforcement learning, and motor learning, whose properties clarify how an animal can learn to acquire a delayed reward. Behavioral and neural data are summarized in support of each processing stage of the system. The relevant anatomical sites are in thalamus, neocortex, hippocampus, hypothalamus, amygdala, and cerebellum. Cerebellar influences on motor learning are distinguished from hippocampal influences on adaptive timing of reinforcement learning. The model simulates how damage to the hippocampal formation disrupts adaptive timing, eliminates attentional blocking, and causes symptoms of medial temporal amnesia. It suggests how normal acquisition of subcortical emotional conditioning can occur after cortical ablation, even though extinction of emotional conditioning is retarded by cortical ablation. The model simulates how increasing the duration of an unconditioned stimulus increases the amplitude of emotional conditioning, but does not change adaptive timing; and how an increase in the intensity of a conditioned stimulus "speeds up the clock", but an increase in the intensity of an unconditioned stimulus does not. Computer simulations of the model fit parametric conditioning data, including a Weber law property and an inverted U property. Both primary and secondary adaptively timed conditioning are simulated, as are data concerning conditioning using multiple interstimulus intervals (ISIs), gradually or abruptly changing ISis, partial reinforcement, and multiple stimuli that lead to time-averaging of responses. Neurobiologically testable predictions are made to facilitate further tests of the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To identify factors influencing attitudes of partially dentate adults towards dental treatment in Ireland. Background: People are retaining more teeth later in life than ever before. Management of partially dentate older adults will be a major requirement for the future and it is important to determine factors which may influence patients’ attitudes to care. Methods: Subjects: A purposive sample of 22 partially dentate patients was recruited; 12 women and 12 men, ranging in age from 45 to 75 years. Data Collection: Semi-structured individual interviews. Results: Dental patients have increasing expectations in relation to (i) a more sophisticated approach to the management of missing teeth and (ii) their right to actively participate in decision making regarding the management of their tooth loss. There is some evidence of a cohort effect with younger patients (45–64 years) having higher expectations. Conclusions: The evidence of a cohort effect within this study in relation to higher patient expectations indicates that both contemporary and future patients are likely to seek a service based on conservation and restoration of missing teeth by fixed prostheses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Previous investigations revealed that the impact of task-irrelevant emotional distraction on ongoing goal-oriented cognitive processing is linked to opposite patterns of activation in emotional and perceptual vs. cognitive control/executive brain regions. However, little is known about the role of individual variations in these responses. The present study investigated the effect of trait anxiety on the neural responses mediating the impact of transient anxiety-inducing task-irrelevant distraction on cognitive performance, and on the neural correlates of coping with such distraction. We investigated whether activity in the brain regions sensitive to emotional distraction would show dissociable patterns of co-variation with measures indexing individual variations in trait anxiety and cognitive performance. METHODOLOGY/PRINCIPAL FINDINGS: Event-related fMRI data, recorded while healthy female participants performed a delayed-response working memory (WM) task with distraction, were investigated in conjunction with behavioural measures that assessed individual variations in both trait anxiety and WM performance. Consistent with increased sensitivity to emotional cues in high anxiety, specific perceptual areas (fusiform gyrus--FG) exhibited increased activity that was positively correlated with trait anxiety and negatively correlated with WM performance, whereas specific executive regions (right lateral prefrontal cortex--PFC) exhibited decreased activity that was negatively correlated with trait anxiety. The study also identified a role of the medial and left lateral PFC in coping with distraction, as opposed to reflecting a detrimental impact of emotional distraction. CONCLUSIONS: These findings provide initial evidence concerning the neural mechanisms sensitive to individual variations in trait anxiety and WM performance, which dissociate the detrimental impact of emotion distraction and the engagement of mechanisms to cope with distracting emotions. Our study sheds light on the neural correlates of emotion-cognition interactions in normal behaviour, which has implications for understanding factors that may influence susceptibility to affective disorders, in general, and to anxiety disorders, in particular.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emotional and attentional functions are known to be distributed along ventral and dorsal networks in the brain, respectively. However, the interactions between these systems remain to be specified. The present study used event-related functional magnetic resonance imaging (fMRI) to investigate how attentional focus can modulate the neural activity elicited by scenes that vary in emotional content. In a visual oddball task, aversive and neutral scenes were presented intermittently among circles and squares. The squares were frequent standard events, whereas the other novel stimulus categories occurred rarely. One experimental group [N=10] was instructed to count the circles, whereas another group [N=12] counted the emotional scenes. A main effect of emotion was found in the amygdala (AMG) and ventral frontotemporal cortices. In these regions, activation was significantly greater for emotional than neutral stimuli but was invariant to attentional focus. A main effect of attentional focus was found in dorsal frontoparietal cortices, whose activity signaled task-relevant target events irrespective of emotional content. The only brain region that was sensitive to both emotion and attentional focus was the anterior cingulate gyrus (ACG). When circles were task-relevant, the ACG responded equally to circle targets and distracting emotional scenes. The ACG response to emotional scenes increased when they were task-relevant, and the response to circles concomitantly decreased. These findings support and extend prominent network theories of emotion-attention interactions that highlight the integrative role played by the anterior cingulate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using functional magnetic resonance imaging (fMRI), we investigated brain activity evoked by mutual and averted gaze in a compelling and commonly experienced social encounter. Through virtual-reality goggles, subjects viewed a man who walked toward them and shifted his neutral gaze either toward (mutual gaze) or away (averted gaze) from them. Robust activity was evoked in the superior temporal sulcus (STS) and fusiform gyrus (FFG). For both conditions, STS activity was strongly right lateralized. Mutual gaze evoked greater activity in the STS than did averted gaze, whereas the FFG responded equivalently to mutual and averted gaze. Thus, we show that the STS is involved in processing social information conveyed by shifts in gaze within an overtly social context. This study extends understanding of the role of the STS in social cognition and social perception by demonstrating that it is highly sensitive to the context in which a human action occurs.