990 resultados para delta 13C, calcite


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Submarine canyon systems provide a heterogeneous habitat for deep-sea benthos in terms of topography, hydrography, and the quality and quantity of organic matter present. Enhanced meiofauna densities as found in organically enriched canyon sediments suggest that nematodes, as the dominant metazoan meiobenthic taxon, may play an important role in the benthic food web of these sediments. Very little is known about the natural diets and trophic biology of deep-sea nematodes, but enrichment experiments can shed light on nematode feeding selectivity and trophic position. An in-situ pulse-chase experiment (Feedex) was performed in the Nazaré Canyon on the Portuguese margin in summer 2007 to study nematode feeding behaviour. 13C-labelled diatoms and bacteria were added to sediment cores which were then sampled over a 14-day period. There was differential uptake by the nematode community of the food sources provided, indicating selective feeding processes. 13C isotope results revealed that selective feeding was less pronounced at the surface, compared to the sediment subsurface. This was supported by a higher trophic diversity in surface sediments compared to the subsurface, implying that more food items may be used by the nematode community at the sediment surface. Predatory and scavenging nematodes contributed relatively more to biomass than other feeding types and can be seen as key contributors to the nematode food web at the canyon site. Non-selective deposit feeding nematodes were the dominant trophic group in terms of abundance and contributed substantially to total nematode biomass. The high levels of 'fresh' (bioavailable) organic matter input and moderate hydrodynamic disturbance of the canyon environment lead to a more complex trophic structure in canyon nematode communities than that found on the open continental slope, and favours predator/scavengers and non-selective deposit feeders.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several carbonaceous layers or fragments were recovered from sediments of Sites 1150 and 1151 on the deep-sea terrace of the Japan Trench during Leg 186. The X-ray diffraction analysis (XRD) data indicate that these are predominantly dolomitic. In this study, carbon and oxygen isotopes of these carbonates recovered at Sites 1150 and 1151 are presented. The oxygen isotope ratios of the dolomites analyzed range from +0.4 per mil to +4.1 per mil vs. Peedee formation belemnite (PDB) and those of calcites from +0.6 per mil to +2.8 per mil PDB. The isotopic composition of carbon varies from -7.0 per mil to +12.3 per mil PDB in dolomite and from -13.4 per mil to -24.1 per mil PDB in calcite. The wide range of carbon isotopic compositions indicates that the carbonate samples were formed by the decomposition of organic matter through reactions such as oxidation, sulfate reduction, and methane formation during diagenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High sedimentation rates in fjords provide excellent possibilities for high resolution sedimentary and geochemical records over the Holocene. As a baseline for an improved interpretation of geochemical data from fjord sediment cores, this study aims to investigate the inorganic/organic geochemistry of surface sediments and to identify geochemical proxies for terrestrial input and river discharge in the Trondheimsfjord, central Norway. Sixty evenly distributed surface sediment samples were analysed for their elemental composition, total organic carbon (Corg), nitrogen (Norg) and organic carbon stable isotopes (d13Corg), bulk mineral composition and grain size distribution. Our results indicate carbonate marine productivity to be the main CaCO3 source. Also, a strong decreasing gradient of marine-derived organic matter from the entrance towards the fjord inner part is consistent with modern primary production data. We show that the origin of the organic matter as well as the distribution of CaCO3 in Trondheimsfjord sediments can be used as a proxy for the variable inflow of Atlantic water and changes in river runoff. Furthermore, the comparison of grain size independent Al-based trace element ratios with geochemical analysis from terrigenous sediments and bedrocks provides evidence that the distribution of K/Al, Ni/Al and K/Ni in the fjord sediments reflect regional sources of K and Ni in the northern and southern drainage basin of the Trondheimsfjord. Applying these findings to temporally well-constrained sediment records will provide important insights into both the palaeoenvironmental changes of the hinterland and the palaeoceanographic modifications in the Norwegian Sea as response to rapid climate changes and associated feedback mechanisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Core and outcrop analysis from Lena mouth deposits have been used to reconstruct the Late Quaternary sedimentation history of the Lena Delta. Sediment properties (heavy mineral composition, grain size characteristics, organic carbon content) and age determinations (14C AMS and IR-OSL) are applied to discriminate the main sedimentary units of the three major geomorphic terraces, which form the delta. The development of the terraces is controlled by complex interactions among the following four factors: (1) Channel migration. According to the distribution of 14C and IR-OSL age determinations of Lena mouth sediments, the major river runoff direction shifted from the west during marine isotope stages 5-3 (third terrace deposits) towards the northwest during marine isotope stage 2 and transition to stage 1 (second terrace), to the northeast and east during the Holocene (first terrace deposits). (2) Eustasy. Sea level rise from Last Glacial lowstand to the modern sea level position, reached at 6-5 ka BP, resulted in back-filling and flooding of the palaeovalleys. (3) Neotectonics. The extension of the Arctic Mid-Ocean Ridge into the Laptev Sea shelf acted as a halfgraben, showing dilatation movements with different subsidence rates. From the continent side, differential neotectonics with uplift and transpression in the Siberian coast ridges are active. Both likely have influenced river behavior by providing sites for preservation, with uplift, in particular, allowing accumulation of deposits in the second terrace in the western sector. The actual delta setting comprises only the eastern sector of the Lena Delta. (4) Peat formation. Polygenetic formation of ice-rich peaty sand (''Ice Complex'') was most extensive (7-11 m in thickness) in the southern part of the delta area between 43 and 14 ka BP (third terrace deposits). In recent times, alluvial peat (5-6 m in thickness) is accumulated on top of the deltaic sequences in the eastern sector (first terrace).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An area of massive barite precipitations was studied at a tectonic horst in 1500 m water depth in the Derugin Basin, Sea of Okhotsk. Seafloor observations and dredge samples showed irregular, block- to column-shaped barite build-ups up to 10 m high which were scattered over the seafloor along an observation track 3.5 km long. High methane concentrations in the water column show that methane expulsion and probably carbonate precipitation is a recently active process. Small fields of chemoautotrophic clams (Calyptogena sp., Acharax sp.) at the seafloor provide additional evidence for active fluid venting. The white to yellow barites show a very porous and often layered internal fabric, and are typically covered by dark-brown Mn-rich sediment; electron microprobe spectroscopy measurements of barite sub-samples show a Ba substitution of up to 10.5 mol% of Sr. Rare idiomorphic pyrite crystals (~1%) in the barite fabric imply the presence of H2S. This was confirmed by clusters of living chemoautotrophic tube worms (1 mm in diameter) found in pores and channels within the barite. Microscopic examination showed that micritic aragonite and Mg-calcite aggregates or crusts are common authigenic precipitations within the barite fabric. Equivalent micritic carbonates and barite carbonate cemented worm tubes were recovered from sediment cores taken in the vicinity of the barite build-up area. Negative d13C values of these carbonates (>-43.5 per mill PDB) indicate methane as major carbon source; d18O values between 4.04 and 5.88 per mill PDB correspond to formation temperatures, which are certainly below 5°C. One core also contained shells of Calyptogena sp. at different core depths with 14C-ages ranging from 20 680 to >49 080 yr. Pore water analyses revealed that fluids also contain high amounts of Ba; they also show decreasing SO4**2- concentrations and a parallel increase of H2S with depth. Additionally, S and O isotope data of barite sulfate (d34S: 21.0-38.6 per mill CDT; d18O: 9.0-17.6 per mill SMOW) strongly point to biological sulfate reduction processes. The isotope ranges of both S and O can be exclusively explained as the result of a mixture of residual sulfate after a biological sulfate reduction and isotopic fractionation with 'normal' seawater sulfate. While massive barite deposits are commonly assumed to be of hydrothermal origin, the assemblage of cheomautotrophic clams, methane-derived carbonates, and non-thermally equilibrated barite sulfate strongly implies that these barites have formed at ambient bottom water temperatures and form the features of a Giant Cold Seep setting that has been active for at least 49 000 yr.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ocean acidification affects with special intensity Arctic ecosystems, being marine photosynthetic organisms a primary target, although the consequences of this process in the carbon fluxes of Arctic algae are still unknown. The alteration of the cellular carbon balance due to physiological acclimation to an increased CO2 concentration (1300 ppm) in the common Arctic brown seaweeds Desmarestia aculeata and Alaria esculenta from Kongsfjorden (Svalbard) was analysed. Growth rate of D. aculeata was negatively affected by CO2 enrichment, while A. esculenta was positively affected, as a result of a different reorganization of the cellular carbon budget in both species. Desmarestia aculeata showed increased respiration, enhanced accumulation of storage biomolecules and elevated release of dissolved organic carbon, whereas A. esculenta showed decreased respiration and lower accumulation of storage biomolecules. Gross photosynthesis (measured both as O2 evolution and 14C fixation) was not affected in any of them, suggesting that photosynthesis was already saturated at normal CO2 conditions and did not participate in the acclimation response. However, electron transport rate changed in both species in opposite directions, indicating different energy requirements between treatments and species specificity. High CO2 levels also affected the N-metabolism, and 13C isotopic discrimination values from algal tissue pointed to a deactivation of carbon concentrating mechanisms. Since increased CO2 has the potential to modify physiological mechanisms in different ways in the species studied, it is expected that this may lead to changes in the Arctic seaweed community, which may propagate to the rest of the food web.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Paleocene-Eocene thermal maximum (PETM) has been attributed to the rapid release of ~2000 * 10**9 metric tons of carbon in the form of methane. In theory, oxidation and ocean absorption of this carbon should have lowerd deep-sea pH, thereby triggering a rapid (<10,000-year) shoaling of the calcite compensation depth (CCD), followed by gradual recovery. Here we present geochemical data from five new South Atlantic deep-sea sections that constrain the timing and extent of massive sea-floor carbonate dissolution coincident with the PETM. The sections, from between 2.7 and 4.8 kilometers water depth, are marked by a prominent clay layer, the character of which indicates that the CCD shoaled rapidly (<10,000 years) by more than 2 kilometers and recovered gradually (>100,000 years). These findings indicate that a large mass of carbon (>>2000 * 10**9 metric tons of carbon) dissolved in the ocean at the Paleocene-Eocene boundary and that permanent sequestration of this carbon occurred through silicate weathering feedback.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Degradation of organic matter in slightly organic-rich (1 wt% organic carbon) Neogene calcareous turbidites of the Argo Basin at Site 765 by sulfate reduction results in pore-water phosphate, ammonium, manganese, and carbonate alkalinity maxima. Pore-water calcium and magnesium decrease in the uppermost 100 meters below seafloor (mbsf) in response to the precipitation of calcian dolomite with an average composition of Ca1.15Mg0.83Fe0.02(CO3)2. Clear, euhedral dolomite rhombs range from <1 to 40 µm in diameter and occur in trace to minor amounts (<1-2 wt%) in Pleistocene to Pliocene sediment (62-210 mbsf) The abundance of dolomite increases markedly (2-10 wt%) in Miocene sediment (210-440 mbsf). The dolomite is associated with diagenetic sepiolite and palygorskite, as well as redeposited biogenic low-Mg calcite and aragonitic benthic foraminifers. Currently, dolomite is precipitating at depth within the pore spaces of the sediment, largely as a result of aragonite dissolution. The rate of aragonite dissolution, calculated from the pore-water strontium profile, is sufficient to explain the amount of dolomite observed at Site 765. A foraminiferal aragonite precursor is further supported by the carbon and oxygen isotopic compositions of the dolomite, which are fairly close to the range of isotopic compositions observed for Miocene benthic foraminifers. Dolomite precipitation is promoted by the degradation of organic matter by sulfate-reducing bacteria because the lower pore-water sulfate concentration reduces the effect of sulfate inhibition on the dolomite reaction and because the higher carbonate alkalinity increases the degree of saturation of the pore waters with dolomite. Organic matter degradation also results in the precipitation of pyrite and trace amounts of apatite (francolite), and the release of iron and manganese to the pore water by reduction of Fe and Mn oxides. Spherical, silt-sized aggregates of microcrystalline calcian rhodochrosite occur in trace to minor amounts in Lower Cretaceous sediment from 740 to 900 mbsf at Site 765. A negative carbon isotopic composition suggests that the rhodochrosite formed early in the sulfate reduction zone, but a depleted oxygen isotopic composition suggests that the rhodochrosite may have recrystallized at deeper burial depths.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Particulate organic matter (POM) derived from permafrost soils and transported by the Lena River represents a quantitatively important terrestrial carbon pool exported to Laptev Sea sediments (next to POM derived from coastal erosion). Its fate in a future warming Arctic, i.e., its remobilization and remineralization after permafrost thawing as well as its transport pathways to and sequestration in marine sediments, is currently under debate. We present one of the first radiocarbon (14C) data sets for surface water POM within the Lena Delta sampled in the summers of 2009 - 2010 and spring 2011 (n = 30 samples). The bulk D14C values varied from -55 to -391 per mil translating into 14C ages of 395 to 3920 years BP. We further estimated the fraction of soil-derived POM to our samples based on (1) particulate organic carbon to particulate nitrogen ratios (POC : PN) and (2) on the stable carbon isotope (d13C) composition of our samples. Assuming that this phytoplankton POM has a modern 14C concentration, we inferred the 14C concentrations of the soil-derived POM fractions. The results ranged from -322 to -884 per mil (i.e., 3060 to 17 250 14C years BP) for the POC : PN-based scenario and from -261 to -944 per mil (i.e., 2370 to 23 100 14C years BP) for the d13C-based scenario. Despite the limitations of our approach, the estimated D14C values of the soil-derived POM fractions seem to reflect the heterogeneous 14C concentrations of the Lena River catchment soils covering a range from Holocene to Pleistocene ages better than the bulk POM D14C values. We further used a dual-carbon-isotope three-end-member mixing model to distinguish between POM contributions from Holocene soils and Pleistocene Ice Complex (IC) deposits to our soil-derived POM fraction. IC contributions are comparatively low (mean of 0.14) compared to Holocene soils (mean of 0.32) and riverine phytoplankton (mean of 0.55), which could be explained with the restricted spatial distribution of IC deposits within the Lena catchment. Based on our newly calculated soil-derived POM D14C values, we propose an isotopic range for the riverine soil-derived POM end member with D14C of -495 ± 153 per mil deduced from our d13C-based binary mixing model and d13C of -26.6 ± 1 per mil deduced from our data of Lena Delta soils and literature values. These estimates can help to improve the dual-carbon-isotope simulations used to quantify contributions from riverine soil POM, Pleistocene IC POM from coastal erosion, and marine POM in Siberian shelf sediments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report results from boron, carbon and oxygen stable isotope analyses of faulted and veined rocks recovered by scientific ocean drilling during ODP Leg 180 in the western Woodlark Basin, off Papua New Guinea. In this area of active continental extension, crustal break-up and incipient seafloor spreading, a shallow-dipping, seismically active detachment fault accommodates strain, defining a zone of mylonites and cataclasites, vein formation and fluid infiltration. Syntectonic microstructures and vein-fill mineralogy suggest frictional heating during slip during extension and exhumation of Moresby Seamount. Low carbon and oxygen isotope ratios of calcite veins indicate precipitation from hydrothermal fluids (delta13C PDB down to -17?; delta18O PDB down to -22?) formed by both dehydration and decarbonation. Boron contents are low (<7 ppm), indicating high-grade metamorphic source rock for the fluids. Some of the delta11B signatures (17-35?; parent solutions to calcite vein fills) are low when compared to deep-seated waters in other tectonic environments, likely reflecting preferential loss of 11B during low-grade metamorphism at depth. Pervasive devolatilization and flux of CO2-rich fluids are evident from similar vein cement geochemistry in the detachment fault zone and splays further updip. Multiple rupture-and-healing history of the veins suggests that precipitation may be an important player in fluid pressure evolution and, hence, seismogenic fault movement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This report presents the results of a study of the stable isotopic and chemical composition of secondary carbonate minerals precipitated within basalts at Ocean Drilling Program Sites 707 and 715. At Site 715, the secondary carbonates are all composed of calcite and display a narrow range of carbon and oxygen stable isotope ratios, with values ranging from -2.75 per mil to 1.95 per mil PDB and -0.27 per mil to 2.86 per mil PDB, respectively. Strontium, iron, and manganese values of the samples are generally low. The geochemistry of Site 715 samples indicates that they precipitated from seawater-domi- nated fluids, at low temperatures, as is typical of secondary carbonates from most Deep Sea Drilling Project sites. In contrast, at Site 707, aragonite, siderite, and manganese-rich calcite occur as secondary carbonates in addition to calcite. The carbon isotopes of the Site 707 carbonates of all rock types are depleted in 13C. Values range from -2.79 per mil to -16.43 per mil PDB. Oxygen isotope values do not show a wide variation, ranging from -1.78 per mil to 1.17 per mil. The strontium contents of the samples range from 5200 to 8100 ppm for aragonites, and from 145 to 862 ppm for calcites. Iron and manganese contents are high in calcites and siderites and low in aragonites. Site 707 carbonates precipitated at low temperatures in a fairly closed system, in which basalt-seawater interaction has greatly influenced the chemistry of the pore fluids. The reactions occurring within the system before and in conjunction with secondary carbonate precipita- tion include oxidation of isotopically light methane, derived from fluids circulating within the basalts, and reduction of substantial amounts of iron and manganese oxides from the basalts.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated ecological, physiological, and skeletal characteristics of the calcifying green alga Halimeda grown at CO2 seeps (pHtotal ? 7.8) and compared them to those at control reefs with ambient CO2 conditions (pHtotal ? 8.1). Six species of Halimeda were recorded at both the high CO2 and control sites. For the two most abundant species Halimeda digitata and Halimeda opuntia we determined in situ light and dark oxygen fluxes and calcification rates, carbon contents and stable isotope signatures. In both species, rates of calcification in the light increased at the high CO2 site compared to controls (131% and 41%, respectively). In the dark, calcification was not affected by elevated CO2 in H. digitata, whereas it was reduced by 167% in H. opuntia, suggesting nocturnal decalcification. Calculated net calcification of both species was similar between seep and control sites, i.e., the observed increased calcification in light compensated for reduced dark calcification. However, inorganic carbon content increased (22%) in H. digitata and decreased (-8%) in H. opuntia at the seep site compared to controls. Significantly, lighter carbon isotope signatures of H. digitata and H. opuntia phylloids at high CO2 (1.01 per mil [parts per thousand] and 1.94 per mil, respectively) indicate increased photosynthetic uptake of CO2 over HCO3- potentially reducing dissolved inorganic carbon limitation at the seep site. Moreover, H. digitata and H. opuntia specimens transplanted for 14 d from the control to the seep site exhibited similar delta13C signatures as specimens grown there. These results suggest that the Halimeda spp. investigated can acclimatize and will likely still be capable to grow and calcify in inline image conditions exceeding most pessimistic future CO2 projections.