931 resultados para cryptographic pairing computation, elliptic curve cryptography
Resumo:
La multiplication dans le corps de Galois à 2^m éléments (i.e. GF(2^m)) est une opérations très importante pour les applications de la théorie des correcteurs et de la cryptographie. Dans ce mémoire, nous nous intéressons aux réalisations parallèles de multiplicateurs dans GF(2^m) lorsque ce dernier est généré par des trinômes irréductibles. Notre point de départ est le multiplicateur de Montgomery qui calcule A(x)B(x)x^(-u) efficacement, étant donné A(x), B(x) in GF(2^m) pour u choisi judicieusement. Nous étudions ensuite l'algorithme diviser pour régner PCHS qui permet de partitionner les multiplicandes d'un produit dans GF(2^m) lorsque m est impair. Nous l'appliquons pour la partitionnement de A(x) et de B(x) dans la multiplication de Montgomery A(x)B(x)x^(-u) pour GF(2^m) même si m est pair. Basé sur cette nouvelle approche, nous construisons un multiplicateur dans GF(2^m) généré par des trinôme irréductibles. Une nouvelle astuce de réutilisation des résultats intermédiaires nous permet d'éliminer plusieurs portes XOR redondantes. Les complexités de temps (i.e. le délais) et d'espace (i.e. le nombre de portes logiques) du nouveau multiplicateur sont ensuite analysées: 1. Le nouveau multiplicateur demande environ 25% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito lorsque GF(2^m) est généré par des trinômes irréductible et m est suffisamment grand. Le nombre de portes du nouveau multiplicateur est presque identique à celui du multiplicateur de Karatsuba proposé par Elia. 2. Le délai de calcul du nouveau multiplicateur excède celui des meilleurs multiplicateurs d'au plus deux évaluations de portes XOR. 3. Nous determinons le délai et le nombre de portes logiques du nouveau multiplicateur sur les deux corps de Galois recommandés par le National Institute of Standards and Technology (NIST). Nous montrons que notre multiplicateurs contient 15% moins de portes logiques que les multiplicateurs de Montgomery et de Mastrovito au coût d'un délai d'au plus une porte XOR supplémentaire. De plus, notre multiplicateur a un délai d'une porte XOR moindre que celui du multiplicateur d'Elia au coût d'une augmentation de moins de 1% du nombre total de portes logiques.
Resumo:
Adolescent idiopathic scoliosis (AIS) is a deformity of the spine manifested by asymmetry and deformities of the external surface of the trunk. Classification of scoliosis deformities according to curve type is used to plan management of scoliosis patients. Currently, scoliosis curve type is determined based on X-ray exam. However, cumulative exposure to X-rays radiation significantly increases the risk for certain cancer. In this paper, we propose a robust system that can classify the scoliosis curve type from non invasive acquisition of 3D trunk surface of the patients. The 3D image of the trunk is divided into patches and local geometric descriptors characterizing the surface of the back are computed from each patch and forming the features. We perform the reduction of the dimensionality by using Principal Component Analysis and 53 components were retained. In this work a multi-class classifier is built with Least-squares support vector machine (LS-SVM) which is a kernel classifier. For this study, a new kernel was designed in order to achieve a robust classifier in comparison with polynomial and Gaussian kernel. The proposed system was validated using data of 103 patients with different scoliosis curve types diagnosed and classified by an orthopedic surgeon from the X-ray images. The average rate of successful classification was 93.3% with a better rate of prediction for the major thoracic and lumbar/thoracolumbar types.
Resumo:
Objective To determine scoliosis curve types using non invasive surface acquisition, without prior knowledge from X-ray data. Methods Classification of scoliosis deformities according to curve type is used in the clinical management of scoliotic patients. In this work, we propose a robust system that can determine the scoliosis curve type from non invasive acquisition of the 3D back surface of the patients. The 3D image of the surface of the trunk is divided into patches and local geometric descriptors characterizing the back surface are computed from each patch and constitute the features. We reduce the dimensionality by using principal component analysis and retain 53 components using an overlap criterion combined with the total variance in the observed variables. In this work, a multi-class classifier is built with least-squares support vector machines (LS-SVM). The original LS-SVM formulation was modified by weighting the positive and negative samples differently and a new kernel was designed in order to achieve a robust classifier. The proposed system is validated using data from 165 patients with different scoliosis curve types. The results of our non invasive classification were compared with those obtained by an expert using X-ray images. Results The average rate of successful classification was computed using a leave-one-out cross-validation procedure. The overall accuracy of the system was 95%. As for the correct classification rates per class, we obtained 96%, 84% and 97% for the thoracic, double major and lumbar/thoracolumbar curve types, respectively. Conclusion This study shows that it is possible to find a relationship between the internal deformity and the back surface deformity in scoliosis with machine learning methods. The proposed system uses non invasive surface acquisition, which is safe for the patient as it involves no radiation. Also, the design of a specific kernel improved classification performance.
Resumo:
Scoliosis treatment strategy is generally chosen according to the severity and type of the spinal curve. Currently, the curve type is determined from X-rays whose acquisition can be harmful for the patient. We propose in this paper a system that can predict the scoliosis curve type based on the analysis of the surface of the trunk. The latter is acquired and reconstructed in 3D using a non invasive multi-head digitizing system. The deformity is described by the back surface rotation, measured on several cross-sections of the trunk. A classifier composed of three support vector machines was trained and tested using the data of 97 patients with scoliosis. A prediction rate of 72.2% was obtained, showing that the use of the trunk surface for a high-level scoliosis classification is feasible and promising.
Resumo:
Secret sharing schemes allow a secret to be shared among a group of participants so that only qualified subsets of participants can recover the secret. A visual cryptography scheme (VCS) is a special kind of secret sharing scheme in which the secret to share consists of an image and the shares consist of xeroxed transparencies which are stacked to recover the shared image. In this thesis we have given the theoretical background of Secret Sharing Schemes and the historical development of the subject. We have included a few examples to improve the readability of the thesis. We have tried to maintain the rigor of the treatment of the subject. The limitations and disadvantages of the various forms secret sharing schemes are brought out. Several new schemes for both dealing and combining are included in the thesis. We have introduced a new number system, called, POB number system. Representation using POB number system has been presented. Algorithms for finding the POB number and POB value are given.We have also proved that the representation using POB number system is unique and is more efficient. Being a new system, there is much scope for further development in this area.
Resumo:
During 1990's the Wavelet Transform emerged as an important signal processing tool with potential applications in time-frequency analysis and non-stationary signal processing.Wavelets have gained popularity in broad range of disciplines like signal/image compression, medical diagnostics, boundary value problems, geophysical signal processing, statistical signal processing,pattern recognition,underwater acoustics etc.In 1993, G. Evangelista introduced the Pitch- synchronous Wavelet Transform, which is particularly suited for pseudo-periodic signal processing.The work presented in this thesis mainly concentrates on two interrelated topics in signal processing,viz. the Wavelet Transform based signal compression and the computation of Discrete Wavelet Transform. A new compression scheme is described in which the Pitch-Synchronous Wavelet Transform technique is combined with the popular linear Predictive Coding method for pseudo-periodic signal processing. Subsequently,A novel Parallel Multiple Subsequence structure is presented for the efficient computation of Wavelet Transform. Case studies also presented to highlight the potential applications.
Resumo:
Internet today has become a vital part of day to day life, owing to the revolutionary changes it has brought about in various fields. Dependence on the Internet as an information highway and knowledge bank is exponentially increasing so that a going back is beyond imagination. Transfer of critical information is also being carried out through the Internet. This widespread use of the Internet coupled with the tremendous growth in e-commerce and m-commerce has created a vital need for infonnation security.Internet has also become an active field of crackers and intruders. The whole development in this area can become null and void if fool-proof security of the data is not ensured without a chance of being adulterated. It is, hence a challenge before the professional community to develop systems to ensure security of the data sent through the Internet.Stream ciphers, hash functions and message authentication codes play vital roles in providing security services like confidentiality, integrity and authentication of the data sent through the Internet. There are several ·such popular and dependable techniques, which have been in use widely, for quite a long time. This long term exposure makes them vulnerable to successful or near successful attempts for attacks. Hence it is the need of the hour to develop new algorithms with better security.Hence studies were conducted on various types of algorithms being used in this area. Focus was given to identify the properties imparting security at this stage. By making use of a perception derived from these studies, new algorithms were designed. Performances of these algorithms were then studied followed by necessary modifications to yield an improved system consisting of a new stream cipher algorithm MAJE4, a new hash code JERIM- 320 and a new message authentication code MACJER-320. Detailed analysis and comparison with the existing popular schemes were also carried out to establish the security levels.The Secure Socket Layer (SSL) I Transport Layer Security (TLS) protocol is one of the most widely used security protocols in Internet. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL I TLS. But recent attacks on RC4 and HMAC have raised questions about the reliability of these algorithms. Hence MAJE4 and MACJER-320 have been proposed as substitutes for them. Detailed studies on the performance of these new algorithms were carried out; it has been observed that they are dependable alternatives.
Resumo:
The finite-size-dependent enhancement of pairing in mesoscopic Fermi systems is studied under the assumption that the BCS approach is valid and that the two-body force is size independent. Different systems are investigated such as superconducting metallic grains and films as well as atomic nuclei. It is shown that the finite size enhancement of pairing in these systems is in part due to the presence of a surface which accounts quite well for the data of nuclei and explains a good fraction of the enhancement in Al grains.
Resumo:
This thesis is an outcome of the investigations carried out on the development of an Artificial Neural Network (ANN) model to implement 2-D DFT at high speed. A new definition of 2-D DFT relation is presented. This new definition enables DFT computation organized in stages involving only real addition except at the final stage of computation. The number of stages is always fixed at 4. Two different strategies are proposed. 1) A visual representation of 2-D DFT coefficients. 2) A neural network approach. The visual representation scheme can be used to compute, analyze and manipulate 2D signals such as images in the frequency domain in terms of symbols derived from 2x2 DFT. This, in turn, can be represented in terms of real data. This approach can help analyze signals in the frequency domain even without computing the DFT coefficients. A hierarchical neural network model is developed to implement 2-D DFT. Presently, this model is capable of implementing 2-D DFT for a particular order N such that ((N))4 = 2. The model can be developed into one that can implement the 2-D DFT for any order N upto a set maximum limited by the hardware constraints. The reported method shows a potential in implementing the 2-D DF T in hardware as a VLSI / ASIC
Resumo:
Biometrics deals with the physiological and behavioral characteristics of an individual to establish identity. Fingerprint based authentication is the most advanced biometric authentication technology. The minutiae based fingerprint identification method offer reasonable identification rate. The feature minutiae map consists of about 70-100 minutia points and matching accuracy is dropping down while the size of database is growing up. Hence it is inevitable to make the size of the fingerprint feature code to be as smaller as possible so that identification may be much easier. In this research, a novel global singularity based fingerprint representation is proposed. Fingerprint baseline, which is the line between distal and intermediate phalangeal joint line in the fingerprint, is taken as the reference line. A polygon is formed with the singularities and the fingerprint baseline. The feature vectors are the polygonal angle, sides, area, type and the ridge counts in between the singularities. 100% recognition rate is achieved in this method. The method is compared with the conventional minutiae based recognition method in terms of computation time, receiver operator characteristics (ROC) and the feature vector length. Speech is a behavioural biometric modality and can be used for identification of a speaker. In this work, MFCC of text dependant speeches are computed and clustered using k-means algorithm. A backpropagation based Artificial Neural Network is trained to identify the clustered speech code. The performance of the neural network classifier is compared with the VQ based Euclidean minimum classifier. Biometric systems that use a single modality are usually affected by problems like noisy sensor data, non-universality and/or lack of distinctiveness of the biometric trait, unacceptable error rates, and spoof attacks. Multifinger feature level fusion based fingerprint recognition is developed and the performances are measured in terms of the ROC curve. Score level fusion of fingerprint and speech based recognition system is done and 100% accuracy is achieved for a considerable range of matching threshold
Resumo:
We study the properties of the 1S0 pairing gap in low-density neutron matter. Different corrections to the lowest-order scattering length approximation are explored, resulting in a strong suppression with respect to the BCS result.
Resumo:
We analyze how the spatial localization properties of pairing correlations are changing in a major neutron shell of heavy nuclei. It is shown that the radial distribution of the pairing density depends strongly on whether the chemical potential is close to a low or a high angular momentum level and has little sensitivity to whether the pairing force acts at the surface or in the bulk. The pairing density averaged over one major shell is, however, rather flat, exhibiting little dependence on the pairing force. Hartree-Fock-Bogoliubov calculations for the isotopic chain 100-132Sn are presented for demonstration purposes.
Resumo:
The extension of density functional theory (DFT) to include pairing correlations without formal violation of the particle-number conservation condition is described. This version of the theory can be considered as a foundation of the application of existing DFT plus pairing approaches to atoms, molecules, ultracooled and magnetically trapped atomic Fermi gases, and atomic nuclei where the number of particles is conserved exactly. The connection with Hartree-Fock-Bogoliubov (HFB) theory is discussed, and the method of quasilocal reduction of the nonlocal theory is also described. This quasilocal reduction allows equations of motion to be obtained which are much simpler for numerical solution than the equations corresponding to the nonlocal case. Our theory is applied to the study of some even Sn isotopes, and the results are compared with those obtained in the standard HFB theory and with the experimental ones.