946 resultados para critical electrolyte concentration
Resumo:
Laminin self-assembles into large polymers by a cooperative two-step calcium-dependent mechanism (Yurchenco, P. D., E. C. Tsilibary, A. S. Charonis, and H. Furthmayr. 1985. J. Biol. Chem. 260:7636-7644). The domain specificity of this process was investigated using defined proteolytically generated fragments corresponding to the NH2-terminal globule and adjacent stem of the short arm of the B1 chain (E4), a complex of the two short arms of the A and B2 chains attached to the proximal stem of a third short arm (E1'), a similar complex lacking the globular domains (P1'), and the distal half of the long arm attached to the adjacent portion of the large globule (E8). Polymerization, followed by an increase of turbidity at 360 nm in neutral isotonic TBS containing CaCl2 at 35 degrees C, was quantitatively inhibited in a concentration-dependent manner with laminin fragments E4 and E1' but not with fragments E8 and P1'. Affinity retardation chromatography was used for further characterization of the binding of laminin domains. The migration of fragment E4, but not of fragments E8 and P1', was retarded in a temperature- and calcium-dependent fashion on a laminin affinity column but not on a similar BSA column. These data are evidence that laminin fragments E4 and E1' possess essential terminal binding domains for the self-aggregation of laminin, while fragments E8 and P1' do not. Furthermore, the individual domain-specific interactions that contribute to assembly are calcium dependent and of low affinity.
Resumo:
BACKGROUND To date, the use of proton pump inhibitors (PPIs) has been associated with a low risk of hypomagnesaemia and associated adverse outcomes. We hypothesised that a better risk estimate could be derived from a large cohort of outpatients admitted to a tertiary emergency department (ED). METHODS A cross-sectional study was performed in 5118 patients who had measurements of serum magnesium taken on admission to a large tertiary care ED between January 2009 and December 2010. Hypomagnesaemia was defined as a serum magnesium concentration < 0.75 mmol/l. Demographical data, serum electrolyte values, data on medication, comorbidities and outcome with regard to length of hospital stay and mortality were analysed. RESULTS Serum magnesium was normally distributed where upon 1246 patients (24%) were hypomagnesaemic. These patients had a higher prevalence of out-of-hospital PPI use and diuretic use when compared with patients with magnesium levels > 0.75 mmol/l (both p < 0.0001). In multivariable regression analyses adjusted for PPIs, diuretics, renal function and the Charlson comorbidity index score, the association between use of PPIs and risk for hypomagnesaemia remained significant (OR = 2.1; 95% CI: 1.54-2.85). While mortality was not directly related to low magnesium levels (p = 0.67), the length of hospitalisation was prolonged in these patients even after adjustment for underlying comorbid conditions (p < 0.0001). CONCLUSION Use of PPIs predisposes patients to hypomagnesaemia and such to prolonged hospitalisation irrespective of the underlying morbidity, posing a critical concern.
Resumo:
Management plans to reduce human-caused deaths of North Atlantic right whales Eubalaena glacialis depend, in part, on knowing when and where right whales are likely to be found. Local environmental conditions that influence movements of feeding right whales, such as ultra-dense copepod patches, are unpredictable and ephemeral. We examined the utility of using the regional-scale mean copepod concentration as an indicator of the abundance of right whales in 2 critical habitats off the northeastern coast of the United States: Cape Cod Bay and Great South Channel. Right whales are usually found in Cape Cod Bay during the late winter and early spring, and in the Great South Channel during the late spring and early summer. We found a significant positive relationship between mean concentration of the copepod Calanus finmarchicus in the western Gulf of Maine and the frequency of right whale sightings in the Great South Channel. In Cape Cod Bay we found a significant positive relationship between the mean concentration of other copepods (largely Pseudocalanus spp. and Centropages spp.) and the frequency of right whale sightings. This information could be used to further our understanding of the environmental factors that drive seasonal movement and aggregation of right whales in the Gulf of Maine, and it offers a tool to resource managers and modelers who seek to predict the movements of right whales based upon the concentration of copepods.
Resumo:
We present uranium-thoriumchronology for a 102 mcore through a Pleistocene reef at Tahiti (French Polynesia) sampled during IODP Expedition 310 "Tahiti Sea Level". We employ total and partial dissolution procedures on the older coral samples to investigate the diagenetic overprint of the uranium-thoriumsystem. Although alteration of the U-Th system cannot be robustly corrected, diagenetic trends in the U-Th data, combined with sea level and subsidence constraints for the growth of the corals enables the age of critical samples to be constrained to marine isotope stage 9. We use the ages of the corals, together with d18O based sea-level histories, to provide maximum constraints on possible paleo water-depths. These depth constraints are then compared to independent depth estimates based on algal and foraminiferal assemblages, microbioerosion patterns, and sedimentary facies, confirming the accuracy of these paleo water-depth estimates. We also use the fact that corals could not have grown above sea level to place amaximumconstraint on the subsidence rate of Tahiti to be 0.39 m ka**-1,with the most likely rate being close to the existing minimum estimate of 0.25m ka**-1.
Resumo:
It is widely assumed that the ability of an introduced species to acclimate to local environmental conditions determines its invasion success. The sea anemone Diadumene lineata is a cosmopolitan invader and shows extreme physiological tolerances. It was recently discovered in Kiel Fjord (Western Baltic Sea), although the brackish conditions in this area are physiologically challenging for most marine organisms. This study investigated salinity tolerance in D. lineata specimens from Kiel Fjord in order to assess potential geographical range expansion of the species in the Baltic Sea. In laboratory growth assays, we quantified biomass change and asexual reproduction rates under various salinity regimes (34: North Sea, 24: Kattegat, 14: Kiel Fjord, 7: Baltic Proper). Furthermore, we used 1H-NMR-based metabolomics to analyse intracellular osmolyte dynamics. Within 4 weeks D. lineata exhibited a 5-fold population growth through asexual reproduction at high salinities (34 and 24). Biomass increase under these conditions was significantly higher (69%) than at a salinity of 14. At a salinity of 7, anemones ceased to reproduce asexually, their biomass decreased and metabolic depression was observed. Five main intracellular osmolytes were identified to be regulated in response to salinity change, with osmolyte depletion at a salinity of 7. We postulate that depletion of intracellular osmolytes defines a critical salinity (Scrit) that determines loss of fitness. Our results indicate that D. lineata has the potential to invade the Kattegat and Skagerrak regions with salinity >10. However, salinities of the Baltic Proper (salinity <8) currently seem to constitute a physiological limit for the species.
Resumo:
Sea surface temperatures and sea-ice extent are the most critical variables to evaluate the Southern Ocean paleoceanographic evolution in relation to the development of the global carbon cycle, atmospheric CO2 variability and ocean-atmosphere circulation. In contrast to the Atlantic and the Indian sectors, the Pacific sector of the Southern Ocean has been insufficiently investigated so far. To cover this gap of information we present diatom-based estimates of summer sea surface temperature (SSST) and winter sea-ice concentration (WSI) from 17 sites in the polar South Pacific to study the Last Glacial Maximum (LGM) at the EPILOG time slice (19,000-23,000 cal. years BP). Applied statistical methods are the Imbrie and Kipp Method (IKM) and the Modern Analog Technique (MAT) to estimate temperature and sea-ice concentration, respectively. Our data display a distinct LGM east-west differentiation in SSST and WSI with steeper latitudinal temperature gradients and a winter sea-ice edge located consistently north of the Pacific-Antarctic Ridge in the Ross sea sector. In the eastern sector of our study area, which is governed by the Amundsen Abyssal Plain, the estimates yield weaker latitudinal SSST gradients together with a variable extended winter sea-ice field. In this sector, sea-ice extent may have reached sporadically the area of the present Subantarctic Front at its maximum LGM expansion. This pattern points to topographic forcing as major controller of the frontal system location and sea-ice extent in the western Pacific sector whereas atmospheric conditions like the Southern Annular Mode and the ENSO affected the oceanographic conditions in the eastern Pacific sector. Although it is difficult to depict the location and the physical nature of frontal systems separating the glacial Southern Ocean water masses into different zones, we found a distinct temperature gradient in latitudes straddled by the modern Southern Subtropical Front. Considering that the glacial temperatures north of this zone are similar to the modern, we suggest that this represents the Glacial Southern Subtropical Front (GSSTF), which delimits the zone of strongest glacial SSST cooling (>4K) to its North. The southern boundary of the zone of maximum cooling is close to the glacial 4°C isotherm. This isotherm, which is in the range of SSST at the modern Antarctic Polar Front (APF), represents a circum-Antarctic feature and marks the northern edge of the glacial Antarctic Circumpolar Current (ACC). We also assume that a glacial front was established at the northern average winter sea ice edge, comparable with the modern Southern Antarctic Circumpolar Current Front (SACCF). During the glacial, this front would be located in the area of the modern APF. The northward deflection of colder than modern surface waters along the South American continent leads to a significant cooling of the glacial Humboldt Current surface waters (4-8K), which affects the temperature regimes as far north as into tropical latitudes. The glacial reduction of ACC temperatures may also result in the significant cooling in the Atlantic and Indian Southern Ocean, thus may enhance thermal differentiation of the Southern Ocean and Antarctic continental cooling. Comparison with temperature and sea ice simulations for the last glacial based on numerical simulations show that the majority of modern models overestimate summer and winter sea ice cover and that there exists few models that reproduce our temperature data rather well.
Resumo:
Fatty acid binding proteins (FABPs) exhibit a β-barrel topology, comprising 10 antiparallel β-sheets capped by two short α-helical segments. Previous studies suggested that fatty acid transfer from several FABPs occurs during interaction between the protein and the acceptor membrane, and that the helical domain of the FABPs plays an important role in this process. In this study, we employed a helix-less variant of intestinal FABP (IFABP-HL) and examined the rate and mechanism of transfer of fluorescent anthroyloxy fatty acids (AOFA) from this protein to model membranes in comparison to the wild type (wIFABP). In marked contrast to wIFABP, IFABP-HL does not show significant modification of the AOFA transfer rate as a function of either the concentration or the composition of the acceptor membranes. These results suggest that the transfer of fatty acids from IFABP-HL occurs by an aqueous diffusion-mediated process, i.e., in the absence of the helical domain, effective collisional transfer of fatty acids to membranes does not occur. Binding of wIFABP and IFABP-HL to membranes was directly analyzed by using a cytochrome c competition assay, and it was shown that IFABP-HL was 80% less efficient in preventing cytochrome c from binding to membranes than the native IFABP. Collectively, these results indicate that the α-helical region of IFABP is involved in membrane interactions and thus plays a critical role in the collisional mechanism of fatty acid transfer from IFABP to phospholipid membranes.
Resumo:
Acknowledgements This research was supported by NERC grants (NE/L001764/1, NE/M010953/1). We are grateful to J. Still and A. Sandison for technical support and to the gypsum mines and C. Brolley for access and sampling. Critical comments from Cristiana Ciobanu, Eric Gloaguen and Georges Calas are gratefully acknowledged. The authors have no conflicts of interest to declare
Resumo:
In leaves of Egeria densa Planchon, N-ethylmaleimide (NEM) and other sulfhydryl-binding reagents induce a temporary increase in nonmitochondrial respiration (ΔQO2) that is inhibited by diphenylene iodonium and quinacrine, two known inhibitors of the plasma membrane NADPH oxidase, and are associated with a relevant increase in electrolyte leakage (M. Bellando, S. Sacco, F. Albergoni, P. Rocco, M.T. Marré [1997] Bot Acta 110: 388–394). In this paper we report data indicating further analogies between the oxidative burst induced by sulfhydryl blockers in E. densa and that induced by pathogen-derived elicitors in animal and plant cells: (a) NEM- and Ag+-induced ΔQO2 was associated with H2O2 production and both effects depended on the presence of external Ca2+; (b) Ca2+ influx was markedly increased by treatment with NEM; (c) the Ca2+ channel blocker LaCl3 inhibited ΔQO2, electrolyte release, and membrane depolarization induced by the sulfhydryl reagents; and (d) LaCl3 also inhibited electrolyte leakage induced by the direct infiltration of the leaves with H2O2. These results suggest a model in which the interaction of sulfhydryl blockers with sulfhydryl groups of cell components would primarily induce an increase in the Ca2+ cytosolic concentration, followed by membrane depolarization and activation of a plasma membrane NADPH oxidase. This latter effect, producing active oxygen species, might further influence plasma membrane permeability, leading to the massive release of electrolytes from the tissue.
Resumo:
OBJECTIVE To determine changes in creatinine concentrations following the administration of 6% tetrastarch (hydroxyethyl starch [HES] 130/0.4) compared to crystalloids (CRYSs) in critically ill dogs. DESIGN Retrospective case series (2010-2013). SETTING University teaching hospital. ANIMALS Two hundred and one dogs admitted to the intensive care unit with initial plasma creatinine concentrations not exceeding laboratory reference intervals (52-117 μmol/L [0.6-1.3 mg/dL]) and receiving either CRYSs alone (CRYS group, n = 115) or HES with or without CRYSs (HES group, n = 86) for at least 24 hours. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Creatinine concentrations at admission to the intensive care unit (T0), and 2-13 days (T1) and 2-12 weeks (T2) after initiation of fluid therapy were analyzed. Creatinine concentrations were analyzed as absolute values and as the maximum percentage change from T0 to T1 (T1max%) and from T0 to T2 (T2max%), respectively. Creatinine concentrations were available for 192 dogs during T1 and 37 dogs during T2. The median cumulative dose of HES was 86 mL/kg (range, 12-336 mL/kg). No difference was detected between the groups for age, gender, body weight, and length of hospitalization. Outcome was significantly different between the HES (66% survived) and the CRYS (87% survived) groups (P = 0.014). No significant difference was detected between groups for creatinine concentrations at T0, T1, T2, T1max%, or T2max%. No significant difference was detected between the groups for T1max% creatinine in dogs subclassified as having systemic inflammatory response syndrome or sepsis. CONCLUSIONS HES administration in this canine population did not result in increased creatinine concentrations compared to administration of CRYSs. Further studies are needed to establish the safety of HES in critically ill dogs.
Resumo:
We present existence results for a Neumann problem involving critical Sobolev nonlinearities both on the right hand side of the equation and at the boundary condition.. Positive solutions are obtained through constrained minimization on the Nehari manifold. Our approach is based on the concentration 'compactness principle of P. L. Lions and M. Struwe.
Resumo:
B-type natriuretic peptide (BNP) is the first biomarker of proven value in screening for left ventricular dysfunction. The availability of point-of-care testing has escalated clinical interest and the resultant research is defining a role for BNP in the investigation and treatment of critically ill patients. This review was undertaken with the aim of collecting and assimilating current evidence regarding the use of BNP assay in the evaluation of myocardial dysfunction in critically ill humans. The information is presented in a format based upon organ system and disease category. BNP assay has been studied in a spectrum of clinical conditions ranging from acute dyspnoea to subarachnoid haemorrhage. Its role in diagnosis, assessment of disease severity, risk stratification and prognostic evaluation of cardiac dysfunction appears promising, but requires further elaboration. The heterogeneity of the critically ill population appears to warrant a range of cut-off values. Research addressing progressive changes in BNP concentration is hindered by infrequent assay and appears unlikely to reflect the critically ill patient's rapidly changing haemodynamics. Multi-marker strategies may prove valuable in prognostication and evaluation of therapy in a greater variety of illnesses. Scant data exist regarding the use of BNP assay to alter therapy or outcome. It appears that BNP assay offers complementary information to conventional approaches for the evaluation of cardiac dysfunction. Continued research should augment the validity of BNP assay in the evaluation of myocardial function in patients with life-threatening illness.
Resumo:
The dynamics of drop formation and pinch-off have been investigated for a series of low viscosity elastic fluids possessing similar shear viscosities, but differing substantially in elastic properties. On initial approach to the pinch region, the viscoelastic fluids all exhibit the same global necking behavior that is observed for a Newtonian fluid of equivalent shear viscosity. For these low viscosity dilute polymer solutions, inertial and capillary forces form the dominant balance in this potential flow regime, with the viscous force being negligible. The approach to the pinch point, which corresponds to the point of rupture for a Newtonian fluid, is extremely rapid in such solutions, with the sudden increase in curvature producing very large extension rates at this location. In this region the polymer molecules are significantly extended, causing a localized increase in the elastic stresses, which grow to balance the capillary pressure. This prevents the necked fluid from breaking off, as would occur in the equivalent Newtonian fluid. Alternatively, a cylindrical filament forms in which elastic stresses and capillary pressure balance, and the radius decreases exponentially with time. A (0+1)-dimensional finitely extensible nonlinear elastic dumbbell theory incorporating inertial, capillary, and elastic stresses is able to capture the basic features of the experimental observations. Before the critical "pinch time" t(p), an inertial-capillary balance leads to the expected 2/3-power scaling of the minimum radius with time: R-min similar to(t(p)-t)(2/3). However, the diverging deformation rate results in large molecular deformations and rapid crossover to an elastocapillary balance for times t>t(p). In this region, the filament radius decreases exponentially with time R-min similar to exp[(t(p)-t)/lambda(1)], where lambda(1) is the characteristic time constant of the polymer molecules. Measurements of the relaxation times of polyethylene oxide solutions of varying concentrations and molecular weights obtained from high speed imaging of the rate of change of filament radius are significantly higher than the relaxation times estimated from Rouse-Zimm theory, even though the solutions are within the dilute concentration region as determined using intrinsic viscosity measurements. The effective relaxation times exhibit the expected scaling with molecular weight but with an additional dependence on the concentration of the polymer in solution. This is consistent with the expectation that the polymer molecules are in fact highly extended during the approach to the pinch region (i.e., prior to the elastocapillary filament thinning regime) and subsequently as the filament is formed they are further extended by filament stretching at a constant rate until full extension of the polymer coil is achieved. In this highly extended state, intermolecular interactions become significant, producing relaxation times far above theoretical predictions for dilute polymer solutions under equilibrium conditions. (C) 2006 American Institute of Physics
Resumo:
The microstructures and electrolytic properties of YxCe1-xO2-x/2 (x = 0.10-0.25) electrolytes with average grain size in the range 90 nm-1.7 mu m were systematically investigated. Through detailed transmission electron microscopy characterization, nanosized domains were observed. The relationship of the domains, the doping level and grain sizes were determined, and their impacts on the electrolytic properties were systematically studied. It was found that the formation of domains has a negative impact on the electrolytic properties, so that electrolytic properties can be adjusted through careful control of domain formation, doping level and grain size. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Structure–activity relationships are indispensable to identify the most optimal antioxidants. The advantages of in vitro over in vivo experiments for obtaining these relationships are, that the structure is better defined in vitro, since less metabolism takes place. It is also the case that the concentration, a parameter that is directly linked to activity, is more accurately controlled. Moreover, the reactions that occur in vivo, including feed-back mechanisms, are often too multi-faceted and diverse to be compensated for during the assessment of a single structure–activity relationship. Pitfalls of in vitro antioxidant research include: (i) by definition, antioxidants are not stable and substantial amounts of oxidation products are formed and (ii) during the scavenging of reactive species, reaction products of the antioxidants accumulate. Another problem is that the maintenance of a defined concentration of antioxidants is subject to processes such as oxidation and the formation of reaction products during the actual antioxidant reaction, as well as the compartmentalization of the antioxidant and the reactive species in the in vitro test system. So determinations of in vitro structure-activity relationships are subject to many competing variables and they should always be evaluated critically. (c) 2005 Published by Elsevier B.V.