994 resultados para copyright theory
Resumo:
In this work we present an analysis of the one-loop Slavnov-Taylor identities in noncommutative QED(4). The vectorial fermion-photon and the triple photon vertex functions were studied, with the conclusion that no anomalies arise.
Resumo:
Let omega be a factor state on the quasilocal algebra A of observables generated by a relativistic quantum field, which, in addition, satisfies certain regularity conditions [satisfied by ground states and the recently constructed thermal states of the P(phi)(2) theory]. We prove that there exist space- and time-translation invariant states, some of which are arbitrarily close to omega in the weak * topology, for which the time evolution is weakly asymptotically Abelian. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3372623]
Resumo:
Using the Berezin-Marinov pseudoclassical formulation of the spin particle we propose a classical model of spin noncommutativity. In the nonrelativistic case, the Poisson brackets between the coordinates are proportional to the spin angular momentum. The quantization of the model leads to the noncommutativity with mixed spatial and spin degrees of freedom. A modified Pauli equation, describing a spin half particle in an external electromagnetic field is obtained. We show that nonlocality caused by the spin noncommutativity depends on the spin of the particle; for spin zero, nonlocality does not appear, for spin half, Delta x Delta y >= theta(2)/2, etc. In the relativistic case the noncommutative Dirac equation was derived. For that we introduce a new star product. The advantage of our model is that in spite of the presence of noncommutativity and nonlocality, it is Lorentz invariant. Also, in the quasiclassical approximation it gives noncommutativity with a nilpotent parameter.
Resumo:
We consider black p-brane solutions of the low-energy string action, computing scalar perturbations. Using standard methods, we derive the wave equations obeyed by the perturbations and treat them analytically and numerically. We have found that tensorial perturbations obtained via a gauge-invariant formalism leads to the same results as scalar perturbations. No instability has been found. Asymptotically, these solutions typically reduce to a AdSd((p+2)) x Sd((8-p)) space which, in the framework of Maldacena's conjecture, can be regarded as a gravitational dual to a conformal field theory defined in a (p+1)-dimensional flat space-time. The results presented open the possibility of a better understanding the AdS/CFT correspondence, as originally formulated in terms of the relation among brane structures and gauge theories.
Resumo:
We investigate bouncing solutions in the framework of the nonsingular gravity model of Brandenberger, Mukhanov and Sornborger. We show that a spatially flat universe filled with ordinary matter undergoing a phase of contraction reaches a stage of minimal expansion factor before bouncing in a regular way to reach the expanding phase. The expansion can be connected to the usual radiation-and matter-dominated epochs before reaching a final expanding de Sitter phase. In general relativity (GR), a bounce can only take place provided that the spatial sections are positively curved, a fact that has been shown to translate into a constraint on the characteristic duration of the bounce. In our model, on the other hand, a bounce can occur also in the absence of spatial curvature, which means that the time scale for the bounce can be made arbitrarily short or long. The implication is that constraints on the bounce characteristic time obtained in GR rely heavily on the assumed theory of gravity. Although the model we investigate is fourth order in the derivatives of the metric (and therefore unstable vis-a-vis the perturbations), this generic bounce dynamics should extend to string-motivated nonsingular models which can accommodate a spatially flat bounce.
Resumo:
This is a more detailed version of our recent paper where we proposed, from first principles, a direct method for evaluating the exact fermion propagator in the presence of a general background field at finite temperature. This can, in turn, be used to determine the finite temperature effective action for the system. As applications, we discuss the complete one loop finite temperature effective actions for 0+1 dimensional QED as well as for the Schwinger model in detail. These effective actions, which are derived in the real time (closed time path) formalism, generate systematically all the Feynman amplitudes calculated in thermal perturbation theory and also show that the retarded (advanced) amplitudes vanish in these theories. Various other aspects of the problem are also discussed in detail.
Resumo:
The study of displaced vertices containing two b-jets may provide a double discovery at the Large Hadron Collider (LHC): we show how it may not only reveal evidence for supersymmetry, but also provide a way to uncover the Higgs boson necessary in the formulation of the electroweak theory in a large region of the parameter space. We quantify this explicitly using the simplest minimal supergravity model with bilinear breaking of R-parity, which accounts for the observed pattern of neutrino masses and mixings seen in neutrino oscillation experiments.
Resumo:
The study of spectral behavior of networks has gained enthusiasm over the last few years. In particular, random matrix theory (RMT) concepts have proven to be useful. In discussing transition from regular behavior to fully chaotic behavior it has been found that an extrapolation formula of the Brody type can be used. In the present paper we analyze the regular to chaotic behavior of small world (SW) networks using an extension of the Gaussian orthogonal ensemble. This RMT ensemble, coined the deformed Gaussian orthogonal ensemble (DGOE), supplies a natural foundation of the Brody formula. SW networks follow GOE statistics until a certain range of eigenvalue correlations depending upon the strength of random connections. We show that for these regimes of SW networks where spectral correlations do not follow GOE beyond a certain range, DGOE statistics models the correlations very well. The analysis performed in this paper proves the utility of the DGOE in network physics, as much as it has been useful in other physical systems.
Resumo:
We analyze the breaking of Lorentz invariance in a 3D model of fermion fields self-coupled through four-fermion interactions. The low-energy limit of the theory contains various submodels which are similar to those used in the study of graphene or in the description of irrational charge fractionalization.
Resumo:
In random matrix theory, the Tracy-Widom (TW) distribution describes the behavior of the largest eigenvalue. We consider here two models in which TW undergoes transformations. In the first one disorder is introduced in the Gaussian ensembles by superimposing an external source of randomness. A competition between TW and a normal (Gaussian) distribution results, depending on the spreading of the disorder. The second model consists of removing at random a fraction of (correlated) eigenvalues of a random matrix. The usual formalism of Fredholm determinants extends naturally. A continuous transition from TW to the Weilbull distribution, characteristic of extreme values of an uncorrelated sequence, is obtained.
Resumo:
The appearance of spin-1 resonances associated with the electroweak symmetry breaking sector is expected in many extensions of the standard model. We analyze the CERN Large Hadron Collider potential to probe the spin of possible new charged and neutral vector resonances through the purely leptonic processes pp -> Z' -> l(+) l'(-) E(T), and pp -> W' -> l'(+/-) l(+) l(-) E(T), with l, l' = e or mu. We perform a model-independent analysis and demonstrate that the spin of the new states can be determined with 99% C. L. in a large fraction of the parameter space where these resonances can be observed with 100 fb(-1). We show that the best sensitivity to the spin is obtained by directly studying correlations between the final state leptons, without the need of reconstructing the events in their center-of-mass frames.
Resumo:
Quantum field theories (QFT's) on noncommutative spacetimes are currently under intensive study. Usually such theories have world sheet noncommutativity. In the present work, instead, we study QFT's with commutative world sheet and noncommutative target space. Such noncommutativity can be interpreted in terms of twisted statistics and is related to earlier work of Oeckl [R. Oeckl, Commun. Math. Phys. 217, 451 (2001)], and others [A. P. Balachandran, G. Mangano, A. Pinzul, and S. Vaidya, Int. J. Mod. Phys. A 21, 3111 (2006); A. P. Balachandran, A. Pinzul, and B. A. Qureshi, Phys. Lett. B 634,434 (2006); A.P. Balachandran, A. Pinzul, B.A. Qureshi, and S. Vaidya, arXiv:hep-th/0608138; A.P. Balachandran, T. R. Govindarajan, G. Mangano, A. Pinzul, B.A. Qureshi, and S. Vaidya, Phys. Rev. D 75, 045009 (2007); A. Pinzul, Int. J. Mod. Phys. A 20, 6268 (2005); G. Fiore and J. Wess, Phys. Rev. D 75, 105022 (2007); Y. Sasai and N. Sasakura, Prog. Theor. Phys. 118, 785 (2007)]. The twisted spectra of their free Hamiltonians has been found earlier by Carmona et al. [J. M. Carmona, J. L. Cortes, J. Gamboa, and F. Mendez, Phys. Lett. B 565, 222 (2003); J. M. Carmona, J. L. Cortes, J. Gamboa, and F. Mendez, J. High Energy Phys. 03 (2003) 058]. We review their derivation and then compute the partition function of one such typical theory. It leads to a deformed blackbody spectrum, which is analyzed in detail. The difference between the usual and the deformed blackbody spectrum appears in the region of high frequencies. Therefore we expect that the deformed blackbody radiation may potentially be used to compute a Greisen-Zatsepin-Kuzmin cutoff which will depend on the noncommutative parameter theta.
Resumo:
We study the noncommutative massless Kalb-Ramond gauge field coupled to a dynamical U(1) gauge field in the adjoint representation together with a compensating vector field. We derive the Seiberg-Witten map and obtain the corresponding mapped action to first order in theta. The (emergent) gravity structure found in other situations is not present here. The off-shell dual scalar theory is derived and it does not coincide with the Seiberg-Witten mapped scalar theory. Dispersion relations are also discussed. The p-form generalization of the Seiberg-Witten map to order theta is also derived.
Resumo:
We present a temperature- dependent Hartree- Fock- Bogoliubov- Popov theory to analyze the properties of the equilibrium states of an homogeneous mixture of bosonic atoms in two different hyperfine states and in the presence of an internal Josephson coupling. In our calculation we show that the bistable structure of the equilibrium states at zero temperature changes when we increase the temperature of the system. We investigate two mechanisms of the disappearance of bistability. In one, near the collapse of one of the equilibrium states, the acoustical branch becomes unstable and the gap of the optical branch goes to zero. In the other, there is no divergent behavior of the system and bistability disappears at a temperature in which the two equilibrium states merge at a zero- population fraction imbalance. When we further increase the temperature, this state remains as a unique equilibrium configuration.
Resumo:
We discuss the derivation of an equivalent polarization potential independent of angular momentum l for use in the optical Schrodinger equation that describes the elastic scattering of heavy ions. Three different methods are used for this purpose. Application of our theory to the low energy scattering of light heavy-ion systems at near-barrier energies is made. It is found that the notion of an l-independent polarization potential has some validity but cannot be a good substitute for the l-dependent local equivalent Feshbach polarization potential.