878 resultados para confinement, FRP, concrete, elliptical section, stress-strain behavior


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of 3D DEM simulations of granular materials subject to cyclic loading. While both the drained and undrained conditions are considered, the effects of depositional history and consolidation stress history on the stress-strain response are specifically evaluated. It is demonstrated that the different stress histories have a significant effect on soil response and that such effects can be attributed to differences in the initial particle arrangement (fabric).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Weiterentwicklungen in der Betontechnologie führten in den letzten Jahrzehnten zu Hochleistungsbetonen mit immer höheren Festigkeiten. Der Ermüdungsnachweis wurde jedoch kaum weiterentwickelt und beinhaltet immer noch sehr grobe Herangehensweisen bei der Berücksichtigung des Materialwiderstands von Beton. Für eine grundlegende Weiterentwicklung dieses Nachweises fehlt noch das notwendige Wissen zu den Mechanismen der Betonermüdung. Das Ziel dieser Arbeit war es daher, grundlegende Erkenntnisse zum Ermüdungsverhalten hochfester Betone bei unterschiedlichen zyklischen Beanspruchungen zu ermitteln und hierdurch zu einem besseren Verständnis der Mechanismen der Betonermüdung beizutragen. In der vorliegenden Arbeit wurde das Ermüdungsverhalten eines hochfesten Betons bei Druckschwellbeanspruchung anhand der Dehnungs- und Steifigkeitsentwicklungen untersucht. Betrachtet wurden dabei die Einflüsse der bezogenen Oberspannung, der Belastungsfrequenz und der Wellenform. Zusätzlich wurden, ausgehend von in der Literatur dokumentierten Ansätzen, Versuche bei monoton steigender Beanspruchung und Dauerstandbeanspruchung vergleichend durchgeführt. Die Dehnungs- und Steifigkeitsentwicklungen werden durch die untersuchten Belastungsparameter der Ermüdungsbeanspruchung eindeutig beeinflusst. Charakteristische Zusammenhänge zwischen der Beeinflussung einzelner Kenngrößen der Dehnungs- und Steifigkeitsentwicklung und der Beeinflussung der Bruchlastwechselzahlen wurden aufgezeigt. Anhand der Dehnungen und Steifigkeiten an den Phasenübergängen konnten Hinweise auf beanspru-chungsartabhängige Gefügezustände abgeleitet werden. Die vergleichende Auswertung des Dehnungsverhaltens bei monoton steigender Beanspruchung, Ermüdungsbeanspruchung und Dauerstandbeanspruchung zeigte, dass das Ermüdungsverhalten von Beton nicht adäquat in Anlehnung an andere Beanspruchungsarten beschrieben werden kann. Die Untersuchungsergebnisse wurden in eine Modellvorstellung übertragen, die zur Beurteilung der baustofflichen Phänomene bei zyklischen Beanspruchungen geeignet ist. Dabei wurde die Hypothese aufgestellt, dass sich unterschiedlich ausgeprägte Kleinst-Gefügeveränderungen beanspruchungsabhängig einstellen, die die Entstehung und Ausbreitung von Mikrorissen beeinflussen. Die detaillierte Untersuchung der Dehnungs- und Steifigkeitsentwicklungen führte zu neuen und tiefergehenden Erkenntnissen und sollte ergänzt durch die Betrachtungen von Gefügezuständen zukünftig weiterverfolgt werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the 1980s, different devices based on superelastic alloys have been developed to fulfill orthodontic applications. Particularly in the last decades several researches have been carried out to evaluate the mechanical behavior of Ni-Ti alloys, including their tensile, torsion and fatigue properties. However, studies regarding the dependence of elastic properties on residence time of Ni-Ti wires in the oral cavity are scarce. Such approach is essential since metallic alloys are submitted to mechanical stresses during orthodontic treatment as well as pH and temperature fluctuations. The goal of the present contribution is to provide elastic stress-strain results to guide the orthodontic choice between martensitic thermal activated and austenitic superelastic Ni-Ti alloys. From the point of view of an orthodontist, the selection of appropriate materials and the correct maintenance of the orthodontic apparatus are essential needs during clinical treatment. The present work evaluated the elastic behavior of Ni-Ti alloy wires with diameters varying from 0.014 to 0.020 inches, submitted to hysteresis tensile tests with 8% strain. Tensile tests were performed after periods of use of 1, 2 and 3 months in the oral cavity of patients submitted to orthodontic treatment. The results from the hysteresis tests allowed to exam the strain range covered by isostress lines upon loading and unloading, as well as the residual strain after unloading for both superelastic and thermal activated Ni-Ti wires. Superelastic Ni-Ti wires exhibited higher load isostress values compared to thermal activated wires. It was found that such differences in the load isostress values can increase with increasing residence time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the theme of fracture of finite-strain plates and shells based on a phase-field model of crack regularization, we introduce a new staggered algorithm for elastic and elasto-plastic materials. To account for correct fracture behavior in bending, two independent phase-fields are used, corresponding to the lower and upper faces of the shell. This is shown to provide a realistic behavior in bending-dominated problems, here illustrated in classical beam and plate problems. Finite strain behavior for both elastic and elasto-plastic constitutive laws is made compatible with the phase-field model by use of a consistent updated-Lagrangian algorithm. To guarantee sufficient resolution in the definition of the crack paths, a local remeshing algorithm based on the phase- field values at the lower and upper shell faces is introduced. In this local remeshing algorithm, two stages are used: edge-based element subdivision and node repositioning. Five representative numerical examples are shown, consisting of a bi-clamped beam, two versions of a square plate, the Keesecker pressurized cylinder problem, the Hexcan problem and the Muscat-Fenech and Atkins plate. All problems were successfully solved and the proposed solution was found to be robust and efficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent times, light gauge cold-formed steel sections have been used extensively as primary load bearing structural members in many applications in the building industry. Fire safety design of structures using such sections has therefore become more important. Deterioration of mechanical properties of yield stress and elasticity modulus is considered the most important factor affecting the performance of steel structures in fires. Hence there is a need to fully understand the mechanical properties of light gauge cold-formed steels at elevated temperatures. A research project based on experimental studies was therefore undertaken to investigate the deterioration of mechanical properties of light gauge cold-formed steels. Tensile coupon tests were undertaken to determine the mechanical properties of these steels made of both low and high strength steels and thicknesses of 0.60, 0.80 and 0.95 mm at temperatures ranging from 20 to 800ºC. Test results showed that the currently available reduction factors are unsafe to use in the fire safety design of cold-formed steel structures. Therefore new predictive equations were developed for the mechanical properties of yield strength and elasticity modulus at elevated temperatures. This paper presents the details of the experimental study, and the results including the developed equations. It also includes details of a stress-strain model for light gauge cold-formed steels at elevated temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM), a molecular dynamics (MD) simulation is performed to study the single-crystal copper nanowire with surface defects through tension. The tension simulations for nanowire without defect are first carried out under different temperatures, strain rates and time steps and then surface defect effects for nanowire are investigated. The stress-strain curves obtained by the MD simulations of various strain rates show a rate below 1 x 10(9) s-1 will exert less effect on the yield strength and yield point, and the Young's modulus is independent of strain rate. a time step below 5 fs is recommend for the atomic model during the MD simulation. It is observed that high temperature leads to low Young's modulus, as well as the yield strength. The surface defects on nanowires are systematically studied in considering different defect orientations. It is found that the surface defect serves as a dislocation source, and the yield strength shows 34.20% decresse with 45 degree surface defect. Both yield strength and yield point are significantly influenced by the surface defects, except the Young's modulus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical properties have an important role in the fire safety design of cold-formed steel structures due to the rapid reduction in mechanical properties such as yield strength and elastic modulus under fire conditions and associated reduction to the load carrying capacities. Hence there is a need to fully understand the deterioration characteristics of yield strength and elastic modulus of cold-formed steels at elevated temperatures. Although past research has produced useful experimental data on the mechanical properties of cold-formed steels at elevated temperatures, such data do not yet cover different cold-formed steel grades and thicknesses. Therefore, an experimental study was undertaken to investigate the elevated temperature mechanical properties of two low and high strength steels with two thicknesses that are commonly used in Australia. Tensile coupon tests were undertaken using a steady state test method for temperatures in the range 20–700 °C. Test results were compared with the currently available reduction factors for yield strength and elastic modulus, and stress–strain curves, based on which further improvements were made. For this purpose, test results of many other cold-formed steels were also used based on other similar studies undertaken at the Queensland University of Technology. Improved equations were developed to predict the yield strength and elastic modulus reduction factors and stress–strain curves of a range of cold-formed steel grades and thicknesses used in Australia. This paper presents the results of this experimental study, comparisons with the results of past research and steel design standards, and the new predictive equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Total hip arthroplasty carried out using cemented modular-neck implants provides the surgeon with greater intra-operative flexibility and allows more controlled stem positioning. Methods In this study, finite element models of a whole femur implanted with either the Exeter or with a new cemented modular-neck total hip arthroplasty (separate, neck and stem components) were developed. The changes in bone and cement mantle stress/strain were assessed for varying amounts of neck offset and version angle for the modular-neck device for two simulated physiological load cases: walking and stair climbing. Since the Exeter is the gold standard for polished cemented total hip arthroplasty stem design, bone and cement mantle stresses/strains in the modular-neck finite element models were compared with finite element results for the Exeter. Findings For the two physiological load cases, stresses and strains in the bone and cement mantle were similar for all modular-neck geometries. These results were comparable to the bone and cement mechanics surrounding the Exeter. These findings suggest that the Exeter and the modular neck device distribute stress to the surrounding bone and cement in a similar manner. Interpretation It is anticipated that the modular-neck device will have a similar short-term clinical performance to that of the Exeter, with the additional advantages of increased modularity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical damages such as bruising, collision and impact during food processing stages diminish quality and quantity of productions as well as efficiency of operations. Studying mechanical characteristics of food materials will help to enhance current industrial practices. Mechanical properties of fruits and vegetables describe how these materials behave under loading in real industrial operations. Optimizing and designing more efficient equipments require accurate and precise information of tissue behaviours. FE modelling of food industrial processes is an effective method of studying interrelation of variables during mechanical operation. In this study, empirical investigation has been done on mechanical properties of pumpkin peel. The test was a part of FE modelling and simulation of mechanical peeling stage of tough skinned vegetables. The compression test has been conducted on Jap variety of pumpkin. Additionally, stress strain curve, bio-yield and toughness of pumpkin skin have been calculated. The required energy for reaching bio-yield point was 493.75, 507.71 and 451.71 N.mm for 1.25, 10 and 20 mm/min loading speed respectively. Average value of force in bio-yield point for pumpkin peel was 310 N.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract: This paper presents the details of a study into the behaviour and moment capacities of cold-formed steel lipped channel beams (LCB) subject to lateral-torsional buckling at elevated temperatures. It was based on a validated numerical model of a simply supported and laterally unrestrained LCB subjected to a uniform moment. The ultimate moment capacities from this study were compared with the predicted values using ambient and fire design methods. This study showed that the lateral torsional buckling capacity is strongly influenced by the level of non-linearity in the stress-strain curves of steel at elevated temperatures. Hence most of the current design methods based on a single buckling curve were not adequate to determine the moment capacities. This paper proposes a new design method for the cold-formed steel LCBs subject lateral-torsional buckling at elevated temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peeling is an essential phase of post harvesting and processing industry; however undesirable processing losses are unavoidable and always have been the main concern of food processing sector. There are three methods of peeling fruits and vegetables including mechanical, chemical and thermal, depending on the class and type of fruit. By comparison, the mechanical methods are the most preferred; mechanical peeling methods do not create any harmful effects on the tissue and they keep edible portions of produce fresh. The main disadvantage of mechanical peeling is the rate of material loss and deformations. Obviously reducing material losses and increasing the quality of the process has a direct effect on the whole efficiency of food processing industry, this needs more study on technological aspects of these operations. In order to enhance the effectiveness of food industrial practices it is essential to have a clear understanding of material properties and behaviour of tissues under industrial processes. This paper presents the scheme of research that seeks to examine tissue damage of tough skinned vegetables under mechanical peeling process by developing a novel FE model of the process using explicit dynamic finite element analysis approach. A computer model of mechanical peeling process will be developed in this study to stimulate the energy consumption and stress strain interactions of cutter and tissue. The available Finite Element softwares and methods will be applied to establish the model. Improving the knowledge of interactions and involves variables in food operation particularly in peeling process is the main objectives of the proposed study. Understanding of these interrelationships will help researchers and designer of food processing equipments to develop new and more efficient technologies. Presented work intends to review available literature and previous works has been done in this area of research and identify current gap in modelling and simulation of food processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding of mechanical behaviour of food particles will provide researchers and designers essential knowledge to improve and optimise current food industrial technologies. Understanding of tissue behaviours will lead to the reduction of material loss and enhance energy efficiency during processing operations. Although, there are some previous studies on properties of fruits and vegetables however, tissue behaviour under different processing operations will be different. The presented paper is a part of FE modelling and simulation of tissue damage during mechanical peeling of tough skinned vegetables. In this study indentation test was performed on peeled and unpeeled samples at loading rate of 20 mm/min for peel, flesh and unpeeled samples. Consequently, force deformation and stress and strain of samples were calculated. The toughness of the tissue also has been calculated and compared with the previous results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel beams are increasingly used as floor joists and bearers in buildings and often their behaviour and moment capacities are influenced by lateral-torsional buckling. With increasing usage of cold-formed steel beams their fire safety design has become an important issue. Fire design rules are commonly based on past research on hot-rolled steel beams. Hence a detailed parametric study was undertaken using validated finite element models to investigate the lateral-torsional buckling behaviour of simply supported cold-formed steel lipped channel beams subjected to uniform bending at uniform elevated temperatures. The moment capacity results were compared with the predictions from the available ambient temperature and fire design rules and suitable recommendations were made. European fire design rules were found to be over-conservative while the ambient temperature design rules could not be used based on single buckling curve. Hence a new design method was proposed that includes the important non-linear stress-strain characteristics observed for cold-formed steels at elevated temperatures. Comparison with numerical moment capacities demonstrated the accuracy of the new design method. This paper presents the details of the parametric study, comparisons with current design rules and the new design rules proposed in this research for lateral-torsional buckling of cold-formed steel lipped channel beams at elevated temperatures.