950 resultados para compression of vascular illnesses
Resumo:
Notch proteins function as receptors for membrane-bound ligands (Jagged and Delta-like) to regulate cell-fate determination. We have investigated the role of Notch signaling in embryonic endothelium of the mouse by expressing an activated form of the Notch4 protein in vasculature under the regulation of the Flk1 (VEGFR) locus. Expression of activated Notch4 results in a growth and developmental delay and embryonic lethality at about 10 days postcoitum. The extent of the developing vasculature in mutant embryos was restricted, fewer small vessels were seen, and vascular networks were disorganized. The brain periphery of mutant embryos contained large dilated vessels with evidence of compromised vessel-wall integrity and large areas of necrosis; yolk-sac vasculature was abnormal. Expression of an activated form of Notch4 in embryonic vasculature leads to abnormal vessel structure and patterning, implicating the Notch pathway in phases of vascular development associated with vessel patterning and remodeling.
Resumo:
Cyclooxygenase-2 (COX-2) is an inducible form of COX and is overexpressed in diverse tumors, raising the possibility of a role for COX-2 in carcinogenesis. In addition, COX-2 contributes to angiogenesis. The Epstein–Barr virus (EBV) oncoprotein, latent membrane protein 1 (LMP1), is detected in at least 70% of nasopharyngeal carcinoma (NPC) and all EBV-infected preinvasive nasopharyngeal lesions. We found that in specimens of LMP1-positive NPC, COX-2 is frequently expressed, whereas LMP1-negative NPC rarely express the enzyme. We next found that expression of LMP1 in EBV-negative nasopharyngeal epithelial cells induced COX-2 expression. Coexpression of IκBα(S32A/S36A), which is not phosphorylated and prevents NF-κB activation, with LMP1 showed that NF-κB is essential for induction of COX-2 by LMP1. We also demonstrate that NF-κB is involved in LMP1-induced cox-2 promoter activity with the use of reporter assays. Two major regions of LMP1, designated CTAR1 and CTAR2, are signal-transducing domains of LMP1. Constructs expressing either CTAR1 or CTAR2 induce COX-2 but to a lesser extent than wild-type LMP1, consistent with the ability of both regions to activate NF-κB. Furthermore, we demonstrate that LMP1-induced COX-2 is functional because LMP1 increased production of prostaglandin E2 in a COX-2-dependent manner. Finally, we demonstrate that LMP1 increased production of vascular endothelial growth factor (VEGF). Treatment of LMP1-expressing cells with the COX-2-specific inhibitor (NS-398) dramatically decreased production of VEGF, suggesting that LMP1-induced VEGF production is mediated, at least in part, by COX-2. These results suggest that COX-2 induction by LMP1 may play a role in angiogenesis in NPC.
Resumo:
In endothelial cells, stretch-activated cation channels have been proposed to act as mechanosensors for changes in hemodynamic forces. We have identified a novel mechanosensitive pressure-activated channel in intact endothelium from rat aorta and mesenteric artery. The 18-pS cation channel responded with a multifold increase in channel activity when positive pressure was applied to the luminal cell surface with the patch pipette and inactivated at negative pipette pressure. Channel permeability ratio for K+, Na+, and Ca2+ ions was 1:0.98:0.23. Ca2+ influx through the channel was sufficient to activate a neighboring Ca2(+)-dependent K+ channel. Hemodynamic forces are chronically disturbed in arterial hypertension. Endothelial cell dysfunction has been implicated in the pathogenesis of arterial hypertension. In two comparative studies, density of the pressure-activated channel was found to be significantly higher in spontaneously hypertensive rats and renovascular hypertensive rats compared with their respective normotensive controls. Channel activity presumably leads to mechanosensitive Ca2+ influx and induces cell hyperpolarization by K+ channel activity. Both Ca2+ influx and hyperpolarization are known to induce a vasodilatory endothelial response by stimulating endothelial nitric oxide (NO) production. Up-regulation of channel density in hypertension could, therefore, represent a counterregulatory mechanism of vascular endothelium.
Resumo:
Angiogenesis is an essential physiological process and an important factor in disease pathogenesis. However, its exploitation as a clinical target has achieved limited success and novel molecular targets are required. Although heme oxygenase-1 (HO-1) acts downstream of vascular endothelial growth factor (VEGF) to modulate angiogenesis, knowledge of the mechanisms involved remains limited. We set out identify novel HO-1 targets involved in angiogenesis. HO-1 depletion attenuated VEGF-induced human endothelial cell (EC) proliferation and tube formation. The latter response suggested a role for HO-1 in EC migration, and indeed HO-1 siRNA negatively affected directional migration of EC towards VEGF; a phenotype reversed by HO-1 over-expression. EC from Hmox1(-/-) mice behaved similarly. Microarray analysis of HO-1-depleted and control EC exposed to VEGF identified cyclins A1 and E1 as HO-1 targets. Migrating HO-1-deficient EC showed increased p27, reduced cyclin A1 and attenuated cyclin-dependent kinase 2 activity. In vivo, cyclin A1 siRNA inhibited VEGF-driven angiogenesis, a response reversed by Ad-HO-1. Proteomics identified structural protein vimentin as an additional VEGF-HO-1 target. HO-1 depletion inhibited VEGF-induced calpain activity and vimentin cleavage, while vimentin silencing attenuated HO-1-driven proliferation. Thus, vimentin and cyclins A1 and E1 represent VEGF-activated HO-1-dependent targets important for VEGF-driven angiogenesis.
Resumo:
Aim: Vascular disease such as cardiovascular and cerebrovascular diseases, or retinopathy, nephropathy and neuropathy are common in diabetes. Maturity - onset diabetes of the young (MODY) describes a clinically heterogeneous group of familial diabetes characterized by monogenic, autosomal dominant inheritance that generally results from beta cell dysfunction. This study aims to assess the presence of vascular complications on Portuguese patients with a clinical diagnosis of MODY.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
K+ Channels and Membrane Potential in Endothelial Cells. The endothelium plays a vital role in the control of vascular functions, including modulation of tone; permeability and barrier properties; platelet adhesion and aggregation; and secretion of paracrine factors. Critical signaling events in many of these functions involve an increase in intracellular free Ca2+ concentration ([Ca2+](i)). This rise in [Ca2+](i) occurs via an interplay between several mechanisms, including release from intracellular stores, entry from the extracellular space through store depletion and second messenger-mediated processes, and the establishment of a favorable electrochemical gradient. The focus of this review centers on the role of potassium channels and membrane potential in the creation of a favorable electrochemical gradient for Ca2+ entry. In addition, evidence is examined for the existence of various classes of potassium channels and the possible influence of regional variation in expression and experimental conditions.
Resumo:
The vascular organisation of the branchial basket was examined in two Tetraodontiform fishes; the three-barred porcupinefish, Dicotylichthys punctulatus and the banded toadfish, Marylina pleurosticta by scanning electron microscopy of vascular casts and standard histological approaches. In D. punctulatus, interarterial anastomoses (iaas) originated at high densities from the efferent filamental and branchial arteries, subsequently re-anastomosing to form progressively larger secondary vessels. Small branches of this system entered the filament body, where it was interspersed between the intrafilamental vessels. Large-bore secondary vessels ran parallel with the efferent branchial arteries, and were found to constitute an additional arterio-arterial pathway, in that these vessels exited the branchial basket in company with the mandibular, the carotid and the afferent and efferent branchial arteries, from where they gave rise to capillary beds after exit. Secondary vessels were not found to supply filament muscle; rather these tissues were supplied by single specialised vessels running in parallel between the efferent and afferent branchial arteries in both species examined. Although the branchial vascular anatomy was generally fairly similar for the two species examined, iaas were not found to originate from any branchial component in the banded toadfish, M. pleurosticta, which instead showed a moderate frequency of iaas on other vessels in the cephalic region. It is proposed that four independent vascular pathways may be present within the teleostean gill filament, the conventional arterio-arterial pathway across the respiratory lamellae; an arterio-arterial system of secondary vessels supplying the filament and non-branchial tissues; a system of vessels supplying the filament musculature; and the intrafilamental vessels (central venous sinus). The present study demonstrates that phylogenetic differences in the arrangement of the branchial vascular system occur between species of the same taxon.
Resumo:
This study describes Australian media portrayal of mental illnesses, focusing on depression. A random sample of 1,123 items was selected for analysis from a pool of 13,389 nonfictional media items about mental illness collected between March 2000 and February 2001. Depression was portrayed more frequently than other mental illnesses. Items about depression, eating disorders, and substance use disorders most commonly described policies or programs, whereas items about schizophrenia most frequently portrayed individuals or symptoms and treatment. A minority of items about depression presented information about symptoms, causes, treatment, or prognosis. Although such information was generally accurate, a proportion of items conveyed misleading messages. There is therefore scope for increasing the level of accurate information provided about depression in the Australian media. (c) 2005 Wiley Periodicals, Inc.
Resumo:
INTRODUCTION: Dynamic retinal vessel analysis represents a well-established method for the assessment of vascular reactivity during both normal conditions and after various provocations. We present a case where the subject showed abnormal retinal vessel reactivity after fasting voluntarily for 20 hours. CASE PRESENTATION: A healthy, 21-year-old man who fasted voluntarily for 20 hours exhibited abnormal retinal vascular reactivity (dilation and constriction) after flicker provocation as measured using the Dynamic Retinal Vessel Analyser (Imedos, Jena, Germany). CONCLUSION: The abnormal vascular reactivity induced by fasting was significant; abnormal levels of important nutrients due to fasting and dehydration could play a role through altering the concentration of vasoactive substances such as nitric oxide. This hypothesis needs further investigation.
Resumo:
The devastating impact of Type 2 Diabetes Mellitus (T2DM) -related morbidity and mortality on global healthcare is escalating with higher prevalences of obesity, poor diet, and sedentary lifestyles. Therefore, the clinical need for early diagnosis and prevention in groups of high-risk individuals is necessary. The purpose of this thesis was to investigate the use of surrogate markers, namely retinal vascular function, to determine future vascular endothelial dysfunction, atherosclerosis, large vessel disease and cardiovascular risk in certain groups. This namely covered normoglycaemic and normotensive South Asians (SAs), those with Impaired-Glucose Tolerance (IGT) and individuals with a familial history (FH) of T2DM. Additionally the effect of overweight and obesity was studied. The techniques and modified protocols adopted for this thesis involved the investigation of endothelial function by means of vascular reactivity at the ocular and systemic level. Furthermore, the relationships between retinal and systemic function with circulating markers for endothelial cell function and cardiovascular risk markers were explored. The principal studies and findings of the research were: Vascular Function in Normoglycaemic Individuals with and without a FH of T2DM WE FH individuals exhibited higher levels of total cholesterol levels that correlated well with the retinal arterial dilation amplitude to flicker light stimulus. However this did not extend to noticeable differences in markers for endothelial cell damage and impaired retinal and systemic function. Vascular Function in Normoglycaemic South-Asians vs. White-Europeans without a FH and Vascular Disturbances Compared to healthy WEs (normo -glycaemic and -tensive), SA participants exhibited levels of dyslipidaemia and a state of oxidative stress that extended to impaired vascular function as detected by reduced brachial artery flow-mediated dilation, slower retinal arterial vessel dilation reaction times (Appendix 3) and steeper constriction profiles. Furthermore, gender sub-group analysis presented in a sub-chapter shows that SA males demonstrated 24-hour systemic blood pressure (BP) and heart rate variability (HRV) abnormalities and heightened cardiovascular disease (CVD) risk. Vascular Function in Individuals Newly Diagnosed with IGT as compared to Normoglycaemic Healthy Controls Newly-diagnosed WE and SA IGT patients showed a greater risk for CVD and T2DM progression by means of 24-hour BP abnormalities, dyslipidaemia, increased carotid artery intimal-media thickness (c-IMT), Framingham scores and cholesterol ratios. Additionally, pre-clinical markers for oxidative stress and endothelial dysfunction, as evident by significantly lower levels of plasma glutathione and increased levels of von-Willebrand factor in IGT individuals, extended to impaired vascular systemic and retinal function compared to normal controls. This originally shows retinal, systemic and biochemical disturbances in newly-diagnosed IGT not previously reported before. Vascular Function in Normal, Overweight and Obese Individuals of SA and WE Ethnicity In addition to the intended study chapters, the thesis also investigated the influence of obesity and overweight on vascular function. Most importantly, it was found for the first time that compared to lean individuals it was overweight and not obese individuals that exhibited signs of vascular systemic and ocular dysfunction that was evident alongside markers of atherosclerosis, CVD risk and endothelial damage.
Resumo:
Digital image processing is exploited in many diverse applications but the size of digital images places excessive demands on current storage and transmission technology. Image data compression is required to permit further use of digital image processing. Conventional image compression techniques based on statistical analysis have reached a saturation level so it is necessary to explore more radical methods. This thesis is concerned with novel methods, based on the use of fractals, for achieving significant compression of image data within reasonable processing time without introducing excessive distortion. Images are modelled as fractal data and this model is exploited directly by compression schemes. The validity of this is demonstrated by showing that the fractal complexity measure of fractal dimension is an excellent predictor of image compressibility. A method of fractal waveform coding is developed which has low computational demands and performs better than conventional waveform coding methods such as PCM and DPCM. Fractal techniques based on the use of space-filling curves are developed as a mechanism for hierarchical application of conventional techniques. Two particular applications are highlighted: the re-ordering of data during image scanning and the mapping of multi-dimensional data to one dimension. It is shown that there are many possible space-filling curves which may be used to scan images and that selection of an optimum curve leads to significantly improved data compression. The multi-dimensional mapping property of space-filling curves is used to speed up substantially the lookup process in vector quantisation. Iterated function systems are compared with vector quantisers and the computational complexity or iterated function system encoding is also reduced by using the efficient matching algcnithms identified for vector quantisers.
Resumo:
Background: Vascular endothelial growth factor (VEGF) mediates endothelial cell mitogenesis and enhances vascular permeability. The existence of single or multiple VEGF isoforms and receptors suggests that these proteins may have overlapping but distinct functions, which may be reflected in their cell expression and distribution. Methods: The localisation of VEGFs A–C and their receptors (VEGFRs 1–3, respectively) in 30 fresh human atherosclerotic arteries, 15 normal uterine arteries, and 15 saphenous veins using immunohistochemistry and western blotting. Results: Saphenous veins showed no staining for VEGF-B or VEGFR-2. Smooth muscle cells (SMCs) showed the strongest staining for VEGF-A, VEGF-B, VEGFR-1, and VEGFR-2 in all specimens. Conversely, VEGFR-3 and VEGF-C were predominately localised to the endothelial vasa vasorum in normal arteries, whereas medial SMCs showed the strongest staining in atherosclerotic arteries. Western blotting showed variations in VEGF protein localisation, with lower amounts of VEGF-B and VEGF-C in saphenous veins, compared with arterial tissue. Amounts of VEGF-C were lower than those of VEGF-A and VEGF-B in all specimens. Conclusion: This study provides direct evidence of the presence of VEGF proteins and receptors in human physiology and pathology, with variations in both the amounts of VEGF proteins expressed and their cellular distribution in normal arteries compared with atherosclerotic arteries. The presence of VEGFs A–C and their receptors in normal arterial tissue implies that VEGF functions may extend beyond endothelial cell proliferation. Reduced VEGFR-2 staining in atherosclerotic arteries may have implications for the atherosclerosis process and the development of vascular disease and its complications.
Resumo:
Differential splicing of the flt-1 mRNA generates soluble variant of vascular endothelial growth factor (VEGF) receptor-1 (sVEGFR-1, also known as sFlt-1). The action of VEGF is antagonized by sVEGFR-1. Soluble VEGFR-1 binds to VEGF with a high affinity and therefore works to modulate VEGF and VEGF signaling pathway. In this study, the authors tested the hypothesis that VEGF-mediated endothelial cell angiogenesis is tightly modulated by the release of sVEGFR-1 and placental expression of sVEGFR-1 is upregulated by hypoxia. Immunolocalization studies showed progressively intense staining for sVEGFR-1 and VEGF in the trophoblast of placental villous explants throughout gestation. Endothelial cell migration studies using a modified Boyden's chamber showed a significant increase in cell migration in response to VEGF that was significantly attenuated in the presence of exogenous sVEGFR-1. Furthermore, stimulation of endothelial cells with VEGF led to a dose-dependent increase in the release of sVEGFR-1 as determined by enzyme-linked immunosorbent assay (ELISA). Exposure of normal placental villous explants to hypoxia (1% pO2) increased trophoblast expression of sVEGFR-1 when compared with tissue normoxia (5% pO2). In addition, conditioned media from hypoxia treated placental villous explants induced a significant increase in endothelial cell migration that was significantly reduced in presence of sVEGFR-1. Our study demonstrates that hypoxia positively regulates sVEGFR-1 protein expression in ex vivo trophoblasts, which control VEGF-driven angiogenesis.
Resumo:
Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca 2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via &agr;-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 ± μM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.