833 resultados para cholinergic neurotransmission


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rotation-mediated aggregating brain cell cultures at two different maturational stages (DIV 11 and DIV 20) were subjected for 1 or 2 hours to ischaemic conditions by transient immobilization (arrest of media circulation). During recovery, cell damage was evaluated by measuring changes in cell type-specific enzyme activities and total protein content. It was found that in immature cultures (DIV 11), immobilization for 1 or 2 hours did not affect the parameters measured. By contrast, at DIV 20, ischaemic conditions for 1 hour caused a pronounced decrease in the activities of glutamic acid decarboxylase and choline acetyltransferase. A significant decrease in these neuron-specific enzyme activities was found at post-ischaemic days 1-14, indicating immediate and irreversible neuronal damage. The activity of the astrocyte-specific enzyme, glutamine synthetase, was significantly increased at 4 days post-treatment; equal to control values at 6 days; and significantly decreased at 14 days after the ischaemic insult. Immobilization of DIV 20 cultures for 2 hours caused a drastic reduction in all the parameters measured at post-ischaemic day 6. Generally, the ischaemic conditions appeared to be more detrimental to neurons than to astrocytes, and GABAergic neurons were more affected than cholinergic neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized" electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep" due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cerebral metabolism is compartmentalized between neurons and glia. Although glial glycolysis is thought to largely sustain the energetic requirements of neurotransmission while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of debate. The compartmentalization of cerebral metabolic fluxes can be determined by (13)C nuclear magnetic resonance (NMR) spectroscopy upon infusion of (13)C-enriched compounds, especially glucose. Rats under light α-chloralose anesthesia were infused with [1,6-(13)C]glucose and (13)C enrichment in the brain metabolites was measured by (13)C NMR spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed determining (13)C enrichment curves of amino acid carbons with high reproducibility and to reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA cycle intermediates are not required for flux determination in mathematical models of brain metabolism. Neuronal tricarboxylic acid cycle rate (V(TCA)) and neurotransmission rate (V(NT)) were 0.45 ± 0.01 and 0.11 ± 0.01 μmol/g/min, respectively. Glial V(TCA) was found to be 38 ± 3% of total cerebral oxidative metabolism, accounting for more than half of neuronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (V(PC)) was 0.069 ± 0.004 μmol/g/min, i.e., 25 ± 1% of the glial TCA cycle rate. These results support a role of glial cells as active partners of neurons during synaptic transmission beyond glycolytic metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential of ochratoxin A (OTA) to damage brain cells was studied by using a three-dimensional cell culture system as model for the developing brain. Aggregating cell cultures of foetal rat telencephalon were tested either during an early developmental period, or during a phase of advanced maturation, over a wide range of OTA concentrations (0.4 nM to 50 microM). By monitoring changes in activities of cell type-specific enzymes (ChAt and GAD, for cholinergic and GABAergic neurones, respectively, GS for astrocytes and CNP for oligodendrocytes), the concentration-dependent toxicity and neurodevelopmental effects of OTA were determined. OTA proved to be highly toxic, since a 10-day treatment at 50 nM caused a general cytotoxicity in both mature and immature cultures. At 10 nM of OTA, cell type-specific effects were observed: in immature cultures, a loss in neuronal and oligodendroglial enzyme activities, and an increase in the activity of the astroglial marker glutamine synthetase were found, Furthermore, at 2 and 10 nM of OTA, a clustering of microglial cells was observed. In mature cultures, OTA was somewhat less potent, but caused a similar pattern of toxic effects. A 24 h-treatment with OTA resulted in a concentration-dependent decrease in protein synthesis, with IC50 values of 25 nM and 33 nM for immature and mature cultures respectively. Acute (24 h) treatment at high OTA concentrations (10 to 50 microM) caused a significant increase in reactive oxygen species formation, as measured by the intracellular oxidation of 2',7'-dichlorofluorescin. These results suggest that OTA has the potential to be a potent toxicant to brain cells, and that its effects at nanomolar concentrations are primarily due to the inhibition of protein synthesis, whereas ROS seem not to be involved in the toxicity mediated by a chronic exposure to OTA at such low concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intrarenal neurotransmission implies the co-release of neuropeptides at the neuro-effector junction with direct influence on parameters of kidney function. The presence of an angiotensin (Ang) II-containing phenotype in catecholaminergic postganglionic and sensory fibers of the kidney, based on immunocytological investigations, has only recently been reported. These angiotensinergic fibers display a distinct morphology and intrarenal distribution, suggesting anatomical and functional subspecialization linked to neuronal Ang II-expression. This review discusses the present knowledge concerning these fibers, and their significance for renal physiology and the pathogenesis of hypertension in light of established mechanisms. The data suggest a new role of Ang II as a co-transmitter stimulating renal target cells or modulating nerve traffic from or to the kidney. Neuronal Ang II is likely to be an independent source of intrarenal Ang II. Further physiological experimentation will have to explore the role of the angiotensinergic renal innervation and integrate it into existing concepts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A few recent individual case reports have suggested that a myasthenic syndrome may be associated with statin treatment, but this association is not well described. We report 4 patients who developed symptoms of myasthenia gravis within 2 weeks of starting treatment with a statin drug. In 1 case the drug appears to have exacerbated underlying myasthenic weakness, whereas in the other 3 cases, de novo antibody formation appears to be most likely. In each case, some degree of recovery followed discontinuation of the statin medication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Duchenne muscular dystrophy is an X-linked genetic disease caused by the absence of functional dystrophin. Pharmacological upregulation of utrophin, the autosomal homologue of dystrophin, offers a potential therapeutic approach to treat Duchenne patients. Full-length utrophin mRNA is transcribed from two alternative promoters, called A and B. In contrast to the utrophin promoter A, little is known about the factors regulating the activity of the utrophin promoter B. Computer analysis of this second promoter revealed the presence of several conserved binding motives for Ets-transcription factors. Using electrotransfer of cDNA into mouse muscles, we demonstrate that a genetically modified beta-subunit of the Ets-transcription factor GA-binding protein potently activates a utrophin promoter B reporter construct in innervated muscle fibers in vivo. These results make the GA-binding protein and the signaling cascade regulating its activity in muscle cells, potential targets for the pharmacological modulation of utrophin expression in Duchenne patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to develop a two-compartment metabolic model of brain metabolism to assess oxidative metabolism from [1-(11)C] acetate radiotracer experiments, using an approach previously applied in (13)C magnetic resonance spectroscopy (MRS), and compared with an one-tissue compartment model previously used in brain [1-(11)C] acetate studies. Compared with (13)C MRS studies, (11)C radiotracer measurements provide a single uptake curve representing the sum of all labeled metabolites, without chemical differentiation, but with higher temporal resolution. The reliability of the adjusted metabolic fluxes was analyzed with Monte-Carlo simulations using synthetic (11)C uptake curves, based on a typical arterial input function and previously published values of the neuroglial fluxes V(tca)(g), V(x), V(nt), and V(tca)(n) measured in dynamic (13)C MRS experiments. Assuming V(x)(g)=10 × V(tca)(g) and V(x)(n)=V(tca)(n), it was possible to assess the composite glial tricarboxylic acid (TCA) cycle flux V(gt)(g) (V(gt)(g)=V(x)(g) × V(tca)(g)/(V(x)(g)+V(tca)(g))) and the neurotransmission flux V(nt) from (11)C tissue-activity curves obtained within 30 minutes in the rat cortex with a beta-probe after a bolus infusion of [1-(11)C] acetate (n=9), resulting in V(gt)(g)=0.136±0.042 and V(nt)=0.170±0.103 μmol/g per minute (mean±s.d. of the group), in good agreement with (13)C MRS measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Management of chronic pain is a real challenge, and current treatments focusing on blocking neurotransmission in the pain pathway have only resulted in limited success. Activation of glia cells has been widely implicated in neuroinflammation in the central nervous system, leading to neruodegeneration in many disease conditions such as Alzheimer's and multiple sclerosis. The inflammatory mediators released by activated glial cells, such as tumor necrosis factor-α and interleukin-1β can not only cause neurodegeneration in these disease conditions, but also cause abnormal pain by acting on spinal cord dorsal horn neurons in injury conditions. Pain can also be potentiated by growth factors such as BDNF and bFGF that are produced by glia to protect neurons. Thus, glia cells can powerfully control pain when they are activated to produce various pain mediators. We will review accumulating evidence supporting an important role of microglia cells in the spinal cord for pain control under injury conditions (e.g. nerve injury). We will also discuss possible signaling mechanisms in particular MAP kinase pathways that are critical for glia control of pain. Investigating signaling mechanisms in microglia may lead to more effective management of devastating chronic pain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na-K-adenosinetriphosphatase (Na-K-ATPase) is a potential target for phosphorylation by protein kinase A (PKA) and C (PKC). We have investigated whether the Na-K-ATPase alpha-subunit becomes phosphorylated at its PKA or PKC phosphorylation sites upon stimulation of G protein-coupled receptors primarily linked either to the PKA or the PKC pathway. COS-7 cells, transiently or stably expressing Bufo marinus Na-K-ATPase wild-type alpha- or mutant alpha-subunits affected in its PKA or PKC phosphorylation site, were transfected with recombinant DNA encoding beta 2- or alpha 1-adrenergic (AR), dopaminergic (D1A-R), or muscarinic cholinergic (M1-AChR) receptor subspecies. Agonist stimulation of beta 2-AR or D1A-R led to phosphorylation of the wild-type alpha-subunit, as well as the PKC mutant, but not of the PKA mutant, indicating that these receptors can phosphorylate the Na-K-ATPase via PKA activation. Surprisingly, stimulation of the alpha 1B-AR, alpha 1C-AR, and M1-AChR also increased the phosphorylation of the wild-type alpha-subunit and its PKC mutant but not of its PKA mutant. Thus the phosphorylation induced by these primarily phospholipase C-linked receptors seems mainly mediated by PKA activation. These data indicate that the Na-K-ATPase alpha-subunit can act as an ultimate target for PKA phosphorylation in a cascade starting with agonist-receptor interaction and leading finally to a phosphorylation-mediated regulation of the enzyme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During synaptic activity, the clearance of neuronally released glutamate leads to an intracellular sodium concentration increase in astrocytes that is associated with significant metabolic cost. The proximity of mitochondria at glutamate uptake sites in astrocytes raises the question of the ability of mitochondria to respond to these energy demands. We used dynamic fluorescence imaging to investigate the impact of glutamatergic transmission on mitochondria in intact astrocytes. Neuronal release of glutamate induced an intracellular acidification in astrocytes, via glutamate transporters, that spread over the mitochondrial matrix. The glutamate-induced mitochondrial matrix acidification exceeded cytosolic acidification and abrogated cytosol-to-mitochondrial matrix pH gradient. By decoupling glutamate uptake from cellular acidification, we found that glutamate induced a pH-mediated decrease in mitochondrial metabolism that surpasses the Ca(2+)-mediated stimulatory effects. These findings suggest a model in which excitatory neurotransmission dynamically regulates astrocyte energy metabolism by limiting the contribution of mitochondria to the metabolic response, thereby increasing the local oxygen availability and preventing excessive mitochondrial reactive oxygen species production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During brain development, spontaneous neuronal activity has been shown to play a crucial role in the maturation of neuronal circuitries. Activity-related signals may cause selective neuronal cell death and/or rearrangement of neuronal connectivity. To study the effects of sustained inhibitory activity on developing inhibitory (GABAergic) neurons, three-dimensional primary cell cultures of fetal rat telencephalon were used. In relatively immature cultures, muscimol (10 microns), a GABAA receptor agonist, induced a transient increase in apoptotic cell death, as evidenced by a cycloheximide-sensitive increase of free nucleosomes and an increased frequency of DNA double strand breaks (TUNEL labeling). Furthermore, muscimol caused an irreversible reduction of glutamic acid decarboxylase activity, indicating a loss of GABAergic neurons. The muscimol-induced death of GABAergic neurons was attenuated by the GABAA receptor blockers bicuculline (100 microns) and picrotoxin (100 microns), by depolarizing potassium concentrations (30 mM KCl) and by the L-type calcium channel activator BAY K8644 (2 microns). As compared to the cholinergic marker (choline acetyltransferase activity), glutamic acid decarboxylase activity was significantly more affected by various agents known to inhibit neuronal activity, including tetrodotoxin (1 micron), flunarizine (5 microns), MK 801 (50 microns) and propofol (40 microns). The present results suggest that the survival of a subpopulation of immature GABAergic neurons is dependent on sustained neuronal activity and that these neurons may undergo apoptotic cell death in response to GABAA autoreceptor activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sleep disorders are very prevalent and represent an emerging worldwide epidemic. However, research into the molecular genetics of sleep disorders remains surprisingly one of the least active fields. Nevertheless, rapid progress is being made in several prototypical disorders, leading recently to the identification of the molecular pathways underlying narcolepsy and familial advanced sleep-phase syndrome. Since the first reports of spontaneous and induced loss-of-function mutations leading to hypocretin deficiency in human and animal models of narcolepsy, the role of this novel neurotransmission pathway in sleep and several other behaviors has gained extensive interest. Also, very recent studies using an animal model of familial advanced sleep-phase syndrome shed new light on the regulation of circadian rhythms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the changes in the responses to noradrenaline of isolated tail arteries of spontaneously hypertensive (SHR) and renovascular hypertensive rats (Wistar-Kyoto: two-kidney, one-clip model, WKY:2K1C) compared with normotensive (Wistar-Kyoto, WKY) rats. Renovascular hypertension was induced by 4 weeks' unilateral renal artery clipping. Arteries were vasoconstricted with exogenous noradrenaline, electrical field stimulation or high potassium. The effects of the latter two stimuli were abolished by reserpine and so were presumably dependent on the presence of endogenous noradrenaline. In the SHR the maximal vasoconstriction produced by all three stimuli was greater than in WKY. Dose-response curves were steeper and there was no change in threshold. Vascular mass was greater. We interpret these results as showing an increase in vascular reactivity in the SHR caused by structural adaptation. The WKY:2K1C responses to noradrenaline could also be explained in terms of structural adaptation but there was no increase in vascular mass. Sensitivity to potassium and electrical stimulation was decreased, suggesting a defect in vascular neurotransmission. This was supported by the observations of a decreased arterial noradrenaline content and of decreased sensitivity to cocaine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Cerebral cholinergic transmission plays a key role in cognitive function, and anticholinergic drugs administered during the perioperative phase are a hypothetical cause of postoperative cognitive dysfunction (POCD). We hypothesized that a perioperative increase in serum anticholinergic activity (SAA) is associated with POCD in elderly patients. METHODS: Seventy-nine patients aged >65 years undergoing elective major surgery under standardized general anesthesia (thiopental, sevoflurane, fentanyl, and atracurium) were investigated. Cognitive functions were assessed preoperatively and 7 days postoperatively using the extended version of the CERAD-Neuropsychological Assessment Battery. POCD was defined as a postoperative decline >1 z-score in at least 2 test variables. SAA was measured preoperatively and 7 days postoperatively at the time of cognitive testing. Hodges-Lehmann median differences and their 95% confidence intervals were calculated for between-group comparisons. RESULTS: Of the patients who completed the study, 46% developed POCD. Patients with POCD were slightly older and less educated than patients without POCD. There were no relevant differences between patients with and without POCD regarding gender, demographically corrected baseline cognitive functions, and duration of anesthesia. There were no large differences between patients with and without POCD regarding SAA preoperatively (pmol/mL, median [interquartile range]/median difference [95% CI], P; 1.14 [0.72, 2.37] vs 1.13 [0.68, 1.68]/0.12 [-0.31, 0.57], P = 0.56), SAA 7 days postoperatively (1.32 [0.68, 2.59] vs 0.97 [0.65, 1.83]/0.25 [-0.26, 0.81], P = 0.37), or changes in SAA (0.08 [-0.50, 0.70] vs -0.02 [-0.53, 0.41]/0.1 [-0.31, 0.52], P = 0.62). There was no significant relationship between changes in SAA and changes in cognitive function (Spearman rank correlation coefficient preoperatively of 0.03 [95% CI, -0.21, 0.26] and postoperatively of -0.002 [95% CI, -0.24, 0.23]). CONCLUSIONS: In this panel of patients with low baseline SAA and clinically insignificant perioperative anticholinergic burden, although a relationship cannot be excluded in some patients, our analysis suggests that POCD is probably not a substantial consequence of anticholinergic medications administered perioperatively but rather due to other mechanisms.