952 resultados para chemical mechanical polishing
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work five methods of heat treatments are investigated in order to obtained convenient volume fractions of ferrite, bainite, martensite and retained austenite, starting with a low carbon steel and seeking the distinction of the phases, through optical microscopy. Specific chemical etching is improved. The results in tensile and fatigue tests were accomplished and the results were related with the microstructural parameters. The results show that the mechanical properties are closely related with the phases, grains size and the phases morphology. Copyright © 2001 Society of Automotive Engineers, Inc.
Resumo:
The relationship between the dielectric properties (dielectric constant, ε′, and loss factor, ε; activation energy, E a) and the ratio of epoxy resin (OG) to hardener of the epoxy resin thermosetting polymers was investigated. The amplitude of the ε″ peak decreases with increasing OG content until about 73 wt.% and slightly increases at higher OG content. The temperature of the position of the ε″ peak increases with the increasing of OG content, reaching maximum values for compositions in the range of 67 and 73 wt.%, and then it decreases sharply at higher OG content. The activation energy obtained from dielectric relaxation increased with increasing wt.% OG up to around 70 wt.%. Further increase in concentration of OG up to 83 wt.% reduced E a. The curves of tensile modulus and fracture toughness mechanical properties as a function of OG content presented a similar behavior. ©2006 Sociedade Brasileira de Química.
Resumo:
The relationship between the heat of polymerization (ΔH) and activation energy (Ea) parameters, obtained by differential scanning calorimetry (DSC) and the ratio of epoxy resin to hardener of the thermosetting materials based on an organic-inorganic hybrid epoxy resin (OG) was investigated. Activation energy (Ea) and heat of polymerization (ΔH) increased with an increasing OG content, up to 70 wt%. Further increase in OG content to 80wt% reduced Ea and ΔH. Dynamic mechanical analysis indicates that the maximum cross-link density is obtained at 83 wt% OG, whereas fracture toughness and tensile modulus mechanical properties are maximized at 70 wt% OG. ©2006 Sociedade Brasileira de Química.
Resumo:
Descriptors and quantitative structure property relationships (QSPR) were investigated for mechanical property prediction of carbon nanotubes (CNTs). 78 molecular dynamics (MD) simulations were carried out, and 20 descriptors were calculated to build quantitative structure property relationships (QSPRs) for Young's modulus and Poisson's ratio in two separate analyses: vacancy only and vacancy plus methyl functionalization. In the first analysis, C N2/CT (number of non-sp2 hybridized carbons per the total carbons) and chiral angle were identified as critical descriptors for both Young's modulus and Poisson's ratio. Further analysis and literature findings indicate the effect of chiral angle is negligible at larger CNT radii for both properties. Raman spectroscopy can be used to measure CN2/C T, providing a direct link between experimental and computational results. Poisson's ratio approaches two different limiting values as CNT radii increases: 0.23-0.25 for chiral and armchair CNTs and 0.10 for zigzag CNTs (surface defects <3%). In the second analysis, the critical descriptors were CN2/CT, chiral angle, and MN/CT (number of methyl groups per total carbons). These results imply new types of defects can be represented as a new descriptor in QSPR models. Finally, results are qualified and quantified against experimental data. © 2013 American Chemical Society.
Resumo:
a-C:H films were grown by plasma-enhanced chemical vapor deposition in atmospheres composed by 30 % of acetylene and 70 % of argon. Radiofrequency signal (RF) was supplied to the sample holder to generate the depositing plasmas. Deposition time and pressure were chosen 300 s and 9.5 Pa, respectively, while the excitation power changed from 5 to 125 W. The films were exposed to a post-deposition treatment during 300 s in RF-plasmas (13.56 MHz, 70 W) excited from 13.33 Pa of SF6. Raman and X-ray photoelectron spectroscopy were used to evaluate the microstructure and chemical composition of the films. The thickness was measured by perfilometry. Hardness and friction coefficient were determined from nanoindentation and risk tests, respectively. With increasing power, the film thickness reduced, but a further shrinkage occurred upon the fluorination process. After that, the molecular structure was observed to vary with deposition power. Fluorine was detected in all samples replacing H atoms. Consistently with the elevation in the proportion of C atoms with sp3 hybridization, hardness increased from 2 to 18 GPa. Friction coefficient also increased with power due to the generation of dangling bonds during the fluorination process. © 2012 Springer Science+Business Media, LLC.
Resumo:
New titanium alloys have been developed with the aim of utilizing materials with better properties for application as biomaterials, and Ti-Zr system alloys are among the more promising of these. In this paper, the influence of zirconium concentrations on the structure, microstructure, and selected mechanical properties of Ti-Zr alloys is analyzed. After melting and swaging, the samples were characterized through chemical analysis, density measurements, X-ray diffraction, optical microscopy, Vickers microhardness, and elasticity modulus. In-vitro cytotoxicity tests were performed on cultured osteogenic cells. The results showed the formation essentially of the α′ phase (with hcp structure) and microhardness values greater than cp-Ti. The elasticity modulus of the alloys was sensitive to the zirconium concentrations while remaining within the range of values of conventional titanium alloys. The alloys presented no cytotoxic effects on osteoblastic cells in the studied conditions. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Starch isolated from non-edible Aesculus hippocastanum seeds was characterized and used for preparing starch-based materials. The apparent amylose content of the isolated starch was 33.1%. The size of starch granules ranged from 0.7 to 35 pm, and correlated with the shape of granules (spherical, oval and irregular). The chain length distribution profile of amylopectin showed two peaks, at polymerization degree (DP) of 12 and 41-43. Around 53% of branch unit chains had DP in the range of 11-20. A. hippocastanum starch displayed a typical C-type pattern and the maximum decomposition temperature was 317 degrees C.Thermoplastic starch (TPS) prepared from A. hippocastanum with glycerol and processed by melt blending exhibited adequate mechanical and thermal properties. In contrast, plasticized TPS with glycerol:malic acid (1:1) showed lower thermal stability and a pasty and sticky behavior, indicating that malic acid accelerates degradation of starch during processing. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)