989 resultados para charged aerosols
Determination of stable carbon isotopes of organic acids and carbonaceous aerosols in the atmosphere
Resumo:
Long-term concentration records of carbonaceous particles (CP) are of increasing interest in climate research due to their not yet completely understood effects on climate. Nevertheless, only poor data on their concentrations and sources before the 20th century are available. We present a first long-term record of organic carbon (OC) and elemental carbon (EC) concentrations – the two main fractions of CP – along with the corresponding fraction of modern carbon (fM) derived from radiocarbon (14C) analysis in ice. This allows a distinction and quantification of natural (biogenic) and anthropogenic (fossil) sources in the past. CP were extracted from an ice archive, with resulting carbon quantities in the microgram range. Analysis of 14C by accelerator mass spectrometry (AMS) was therefore highly demanding. We analysed 33 samples of 0.4 to 1 kg ice from a 150.5 m long ice core retrieved at Fiescherhorn glacier in December 2002 (46°33'3.2" N, 08°04'0.4" E; 3900 m a.s.l.). Samples were taken from bedrock up to the firn/ice transition, covering the time period 1650–1940 and thus the transition from the pre-industrial to the industrial era. Before ~1850, OC was approaching a purely biogenic origin with a mean concentration of 24 μg kg−1 and a standard deviation of 7 μg kg−1. In 1940, OC concentration was about a factor of 3 higher than this biogenic background, almost half of it originating from anthropogenic sources, i.e. from combustion of fossil fuels. The biogenic EC concentration was nearly constant over the examined time period with 6 μg kg−1 and a standard deviation of 1 μg kg−1. In 1940, the additional anthropogenic input of atmospheric EC was about 50 μg kg−1.
Resumo:
The adsorption of anionic, carboxyl functionalized latex particles, recharged by a cationic surfactant acting as fabric softener/conditioner, to a cellulose surface was investigated with evanescent wave video microscopy. This technique allows to monitor the deposition and release of individual particles in real-time with an excellent selectivity and sensitivity. Since the recharged particles and the conditioner compete for the free surface, the initial deposition rate and final surface coverage are found to be strongly dependent on the ratio of particle and conditioner concentrations.
Resumo:
PURPOSE: We determined and compared urethral pressure measurements using air charged and microtip catheters in a prospective, single-blind, randomized trial. MATERIALS AND METHODS: A consecutive series of 64 women referred for urodynamic investigation underwent sequential urethral pressure measurements using an air charged and a microtip catheter in randomized order. Patients were blinded to the type and sequence of catheter used. Agreement between the 2 catheter systems was assessed using the Bland and Altman 95% limits of agreement method. RESULTS: Intraclass correlation coefficients of air charged and microtip catheters for maximum urethral closure pressure at rest were 0.97 and 0.93, and for functional profile length they were 0.9 and 0.78, respectively. Pearson's correlation coefficients and Lin's concordance coefficients of air charged and microtip catheters were r = 0.82 and rho = 0.79 for maximum urethral closure pressure at rest, and r = 0.73 and rho = 0.7 for functional profile length, respectively. When applying the Bland and Altman method, air charged catheters gave higher readings than microtip catheters for maximum urethral closure pressure at rest (mean difference 7.5 cm H(2)O) and functional profile length (mean difference 1.8 mm). There were wide 95% limits of agreement for differences in maximum urethral closure pressure at rest (-24.1 to 39 cm H(2)O) and functional profile length (-7.7 to 11.3 mm). CONCLUSIONS: For urethral pressure measurement the air charged catheter is at least as reliable as the microtip catheter and it generally gives higher readings. However, air charged and microtip catheters cannot be used interchangeably for clinical purposes because of insufficient agreement. Hence, clinicians should be aware that air charged and microtip catheters may yield completely different results, and these differences should be acknowledged during clinical decision making.
Resumo:
It has been proposed that inertial clustering may lead to an increased collision rate of water droplets in clouds. Atmospheric clouds and electrosprays contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. In this thesis, we present the investigation of charged inertial particles embedded in turbulence. We have developed a theoretical description for the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb ’terminalar speed to turbulence dissipation velocity scale), and the settling parameter (the ratio of the gravitational terminal speed to turbulence dissipation velocity scale). For the monodispersion particles, The peak in the radial distribution function is well predicted by the balance between the particle terminal velocity under Coulomb repulsion and a time-averaged ’drift’ velocity obtained from the nonuniform sampling of fluid strain and rotation due to finite particle inertia. The theory is compared to measured radial distribution functions for water particles in homogeneous, isotropic air turbulence. The radial distribution functions are obtained from particle positions measured in three dimensions using digital holography. The measurements support the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of ’gravity’ is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity. The relation between the radial distribution functions and inward mean radial relative velocity is established for charged particles.