918 resultados para channel deepening baywide monitoring programs


Relevância:

30.00% 30.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pavements tend to deteriorate with time under repeated traffic and/or environmental loading. By detecting pavement distresses and damage early enough, it is possible for transportation agencies to develop more effective pavement maintenance and rehabilitation programs and thereby achieve significant cost and time savings. The structural health monitoring (SHM) concept can be considered as a systematic method for assessing the structural state of pavement infrastructure systems and documenting their condition. Over the past several years, this process has traditionally been accomplished through the use of wired sensors embedded in bridge and highway pavement. However, the use of wired sensors has limitations for long-term SHM and presents other associated cost and safety concerns. Recently, micro-electromechanical sensors and systems (MEMS) and nano-electromechanical systems (NEMS) have emerged as advanced/smart-sensing technologies with potential for cost-effective and long-term SHM. This two-pronged study evaluated the performance of commercial off-the-shelf (COTS) MEMS sensors embedded in concrete pavement (Final Report Volume I) and developed a wireless MEMS multifunctional sensor system for health monitoring of concrete pavement (Final Report Volume II).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using water quality management programs is a necessary and inevitable way for preservation and sustainable use of water resources. One of the important issues in determining the quality of water in rivers is designing effective quality control networks, so that the measured quality variables in these stations are, as far as possible, indicative of overall changes in water quality. One of the methods to achieve this goal is increasing the number of quality monitoring stations and sampling instances. Since this will dramatically increase the annual cost of monitoring, deciding on which stations and parameters are the most important ones, along with increasing the instances of sampling, in a way that shows maximum change in the system under study can affect the future decision-making processes for optimizing the efficacy of extant monitoring network, removing or adding new stations or parameters and decreasing or increasing sampling instances. This end, the efficiency of multivariate statistical procedures was studied in this thesis. Multivariate statistical procedure, with regard to its features, can be used as a practical and useful method in recognizing and analyzing rivers’ pollution and consequently in understanding, reasoning, controlling, and correct decision-making in water quality management. This research was carried out using multivariate statistical techniques for analyzing the quality of water and monitoring the variables affecting its quality in Gharasou river, in Ardabil province in northwest of Iran. During a year, 28 physical and chemical parameters were sampled in 11 stations. The results of these measurements were analyzed by multivariate procedures such as: Cluster Analysis (CA), Principal Component Analysis (PCA), Factor Analysis (FA), and Discriminant Analysis (DA). Based on the findings from cluster analysis, principal component analysis, and factor analysis the stations were divided into three groups of highly polluted (HP), moderately polluted (MP), and less polluted (LP) stations Thus, this study illustrates the usefulness of multivariate statistical techniques for analysis and interpretation of complex data sets, and in water quality assessment, identification of pollution sources/factors and understanding spatial variations in water quality for effective river water quality management. This study also shows the effectiveness of these techniques for getting better information about the water quality and design of monitoring network for effective management of water resources. Therefore, based on the results, Gharasou river water quality monitoring program was developed and presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iowa Department of Natural Resources (DNR) Ambient Water Monitoring Program provides consistent, unbiased information about the condition of Iowa’s water resources to support decisions affecting the development, management and protection of these resources. To strengthen its services, the program worked with a variety of stakeholders and other DNR programs to develop a five-year strategy for Iowa’s ambient water monitoring efforts. The strategy identifies opportunities to improve the program’s effectiveness in several categories: monitoring objectives, sampling design, data management, products and services, and program evaluation and coordination. Iowa DNR managers and technical staff will use the new strategy to guide decisions affecting the ambient monitoring program over the next five years. The strategy should also serve as a robust informational resource for stakeholders, policy makers, legislators and the public.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.