975 resultados para ceratotoxin like peptide
Resumo:
Abstract Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1) that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS). It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml). Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential alternative to the chemical biocides or surface coating agents currently used to prevent SRB growth in petroleum industries.
Resumo:
Die Alzheimer Krankheit ist eine fortschreitendende Demenzerkrankung von der in Deutschland ca. 1,6 Millionen Menschen betroffen sind. Im Gehirn der Patienten finden sich sogenannte amyloide Plaques, deren Hauptbestandteil das Aβ-Protein ist. Dieses Peptid ist ein Spaltprodukt des APP-Proteins (engl. amyloid precursor protein). APP ist das namensgebende Mitglied der APP-Proteinfamilie zu der neben APP die beiden APP-Homologen APLP1 und APLP2 (engl. amyloid precursor like protein) gehören. Obwohl inzwischen über die pathologische Rolle dieser Proteinfamilie bei der Alzheimer Krankheit vieles bekannt ist, bleiben die physiologischen Funktionen dieser Proteine bisher größtenteils ungeklärt. Die vorliegende Arbeit beschreibt erstmals einen APLP1-spezifischen Effekt auf die Ausbildung von Filopodien. Sowohl das humane als auch das murine APLP1 induzierten nach transienter Überexpression die Bildung zahlreicher filopodialer Fortsätze auf der Membran von PC12-Zellen. Vergleichbare Resultate konnten mit beiden APLP1-Proteinen auch auf der Membran von embryonalen (E18.5), cortikalen Neuronen der Ratte gezeigt werden. Dass APLP1 einen derartigen Effekt auf Neuronen und PC12-Zellen zeigt, begründet die Annahme, dass APLP1 in vivo eine Funktion bei der Entwicklung und Differenzierung von Neuronen übernimmt. Anhand von Versuchen mit deletierten APLP1-Proteinen und APLP1/APLP2-Chimärproteinen konnte gezeigt werden, dass die von Exon 5 und Exon 6 codierten Bereiche des APLP1 für die Induktion der Filopodien essentiell sind. Unter Einbeziehung von in ihrer räumlichen Struktur bereits bekannten Domänen und aufgrund von Homologievergleichen der primären Aminosäuresequenz dieser Region mit entsprechenden Bereichen der APP- bzw. APLP2-Proteine wurde die wahrscheinliche Lage der Filopodien-induzierenden Domäne innerhalb des von Exon 6 codierten Bereiches diskutiert. Es konnte ferner gezeigt werden, dass die untersuchte Induktion von Filopodien durch die sogenannte α-Sekretierung moduliert werden kann. Unter den gewählten Versuchsbedingungen war nur membranständiges APLP1, nicht aber sekretiertes APLP1 in der Lage, Filopodien zu induzieren. Abschliessend wurden Ergebnisse gezeigt, die erste Einblicke in Signalkaskaden erlauben, die von APLP1 angesteuert werden und so die Enstehung der Filopodien auslösen. Bezüglich des primären Prozesses der Signalkaskade, der Bindung von APLP1 an einen bisher unbekannten Rezeptor, wurde die Möglichkeit diskutiert, ob APP oder APLP2 oder sogar APLP1 selbst als Rezeptor fungieren könnten. Die beobachteten Prozesse nach Überexpression von APLP1 entsprechen vermutlich einer physiologischen Funktion bei der Differenzierung von Neuronen, die mit der Interaktion einer extrazellulär gelegenen Domäne mit einem Rezeptor beginnt, die Aktivierung einer Signalkaskade zur Akrinreorganisation zu Folge hat und die Entstehung filopodialer Strukturen auslöst.
Resumo:
Within this thesis, new approaches for the concepts of peptide-polymer conjugates and peptide-based hybrid nanomaterials are investigated. In the first part, the synthesis of a triblock polymer-peptide-polymer is carried out following a typical peptide coupling reaction, both in solution and on solid-phase. The peptide sequence is chosen, so that it is cleaved by an enzyme preparation of trypsin. End-functionalized polystyrene is used as a model hydrophobic polymer and coupled to the peptide sequence. The results show successful coupling reactions in both methods, while the solid phase method produced a more defined product. Suspensions, consisting of peptide-polymer conjugates particles, are prepared in water by ultrasonication. In contact with the enzyme, the peptide constituting the conjugated particles is cleaved. This demonstrates the enzymatic cleavage in heterophase of enzymatic sequence bond to hydrophobic polymers, and is of great interest for the encapsulation and delivery of hydrophobic molecules.rnA second approach is the preparation of peptide-based hybrid nanocapsules. This is achieved by interfacial polyaddition in inverse miniemulsion with the peptide sequence functionalized with additional amino acids. A method suitable to the use of a peptide sequence for interfacial polyaddition was developed. It is shown that, the polarity of the dispersed phase influences the structures prepared, from particle-like to polymeric shell with a liquid core.rnThe peptide sequence is equipped with a FRET pair (more exactly, an internally-quenched fluorescent system) which allows the real-time monitoring of the enzymatic cleavage of the recognition site. This system shows the successful cleavage of the peptide-based nanocapsules when trypsin preparation is added to the suspensions. A water-soluble fluorescent polymer is efficiently entrapped and its possible use as marker for the capsules is highlighted. Furthermore, a small water-soluble fluorescent dye (SR-101) is successfully encapsulated and the encapsulation efficiency as a function of the functionality of the peptide and the amount of comonomer equivalent (toluene diisocyanate) is studied. The dye is encapsulated at such a high concentration, that self-quenching occurs. Thus, the release of the encapsulated dye triggered by the enzymatic cleavage of the peptide results in a fluorescence recovery of the dye. The fluorescence recovery of the FRET pair in the peptide and of the encapsulated dye correlate well.rnFinally, nanocapsules based on a hepsin-cleavable peptide sequence are prepared. Hepsin is an enzyme, which is highly upregulated in prostate cancer cells. The cleavage of the nanocapsules is investigated with healthy and “cancerous” (hepsin-expressing) cell cultures. The degradation, followed via fluorescence recovery of the FRET system, is faster for the suspensions introduced in the hepsin expressing cell cultures.rnIn summary, this work tackles the domain of responsive nanomaterials for drug delivery from a new perspective. It presents the adaptation of the miniemulsion process for hybrid peptide-based materials, and their successful use in preparing specific enzyme-responsive nanoparticles, with hydrophilic payload release properties.rn
Resumo:
Der proteolytische Verdau von Proteinen in Peptide ist ein wichtiger Schritt in der Tandem-Massenspektrometrie. Dabei werden Peptide fragmentiert und die sich ergebenden Fragmentionen geben Aufschluss über die Aminosäuresequenz des zu untersuchenden Proteins. Dabei sind für die Fragmentierung sowohl Länge und Sequenz, als auch der Ladungszustand des Peptids ungemein wichtig. Diese Parameter bedingen sich durch Endoproteasen, die für den proteolytischen Verdau eingesetzt werden. Eine Voraussetzung hierfür ist die Spezifität der Protease. Trypsin ist bei weitem die gebräuchlichste Protease zur massenspektrometrischen Probenvorbereitung. Allerdings bietet Trypsin keine Komplettlösung. Je nach Fragestellung und Applikation müssen weitere Proteasen eingesetzt werden, um eine komplette Sequenzabdeckung zu gewährleisten und möglichst alle posttranslationalen Modifikationen nachzuweisen, oder bestimmte Proteomklassen (z.B Phosphoproteom
Resumo:
To test the hypothesis that the lectin-like domain of tumor necrosis factor, mimicked by the TIP peptide, can improve lung function after unilateral orthotopic lung isotransplantation. Because of a lack of a specific treatment for ischemia reperfusion-mediated lung injury, accompanied by a disrupted barrier integrity and a dysfunctional alveolar liquid clearance, alternative therapies restoring these parameters after lung transplantation are required.
Resumo:
Pergularain e I, a cysteine protease with thrombin-like activity, was purified by ion exchange chromatography from the latex of Pergularia extensa. Its homogeneity was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), native PAGE and reverse-phase high-performance liquid chromatography (RP-HPLC). The molecular mass of pergularain e I by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) was found to be 23.356 kDa and the N-terminal sequence is L-P-H-D-V-E. Pergularain e I is a glycoprotein containing approximately 20% of carbohydrate. Pergularain e I constituted 6.7% of the total protein with a specific activity of 9.5 units/mg/min with a 2.11-fold increased purity. Proteolytic activity of the pergularain e I was completely inhibited by iodoacetic acid (IAA). Pergularain e I exhibited procoagulant activity with citrated plasma and fibrinogen similar to thrombin. Pergularain e I increases the absorbance of fibrinogen solution in concentration-dependent and time-dependent manner. At 10 microg concentration, an absorbance of 0.48 was reached within 10 min of incubation time. Similar absorbance was observed when 0.2 NIH units of thrombin were used. Thrombin-like activity of pergularain e I is because of the selective hydrolysis of A alpha and B beta chains of fibrinogen and gamma-chain was observed to be insusceptible to hydrolysis. Molecular masses of the two peptide fragments released from fibrinogen due to the hydrolysis by pergularain e I at 5-min incubation time were found to be 1537.21 and 1553.29 and were in close agreement with the molecular masses of 16 amino acid sequence of fibrinopeptide A and 14 amino acid sequence of fibrinopeptide B, respectively. Prolonged fibrinogen-pergularain e I incubation releases additional peptides and their sequence comparison of molecular masses of the released peptides suggested that pergularain e I hydrolyzes specifically after arginine residues.
Resumo:
Among synthetic vaccines, virus-like particles (VLPs) are used for their ability to induce strong humoral responses. Very little is reported on VLP-based-vaccine-induced CD4(+) T-cell responses, despite the requirement of helper T cells for antibody isotype switching. Further knowledge on helper T cells is also needed for optimization of CD8(+) T-cell vaccination. Here, we analysed human CD4(+) T-cell responses to vaccination with MelQbG10, which is a Qβ-VLP covalently linked to a long peptide derived from the melanoma self-antigen Melan-A. In all analysed patients, we found strong antibody responses of mainly IgG1 and IgG3 isotypes, and concomitant Th1-biased CD4(+) T-cell responses specific for Qβ. Although less strong, comparable B- and CD4(+) T-cell responses were also found specific for the Melan-A cargo peptide. Further optimization is required to shift the response more towards the cargo peptide. Nevertheless, the data demonstrate the high potential of VLPs for inducing humoral and cellular immune responses by mounting powerful CD4(+) T-cell help.
Resumo:
Cupiennius salei single insulin-like growth factor-binding domain protein (SIBD-1), which exhibits an IGFBP N-terminal domain-like profile, was identified in the hemocytes of the spider C. salei. SIBD-1 was purified by RP-HPLC and the sequence determined by a combination of Edman degradation and 5'-3'- RACE PCR. The peptide (8676.08 Da) is composed of 78 amino acids, contains six intrachain disulphide bridges and carries a modified Thr residue at position 2. SIBD-1 mRNA expression was detected by quantitative real-time PCR mainly in hemocytes, but also in the subesophageal nerve mass and muscle. After infection, the SIBD-1 content in the hemocytes decreases and, simultaneously, the temporal SIBD-1 expression seems to be down-regulated. Two further peptides, SIBD-2 and IGFBP-rP1, also exhibiting IGFBP N-terminal domain variants with unknown functions, were identified on cDNA level in spider hemocytes and venom glands. We conclude that SIBD-1 may play an important role in the immune system of spiders.
Resumo:
The abundance of alpha-fetoprotein (AFP), a natural protein produced by the fetal yolk sac during pregnancy, correlates with lower incidence of estrogen receptor positive (ER+) breast cancer. The pharmacophore region of AFP has been narrowed down to a four amino acid (AA) region in the third domain of the 591 AA peptide. Our computational study focuses on a 4-mer segment consisting of the amino acids threonine-proline-valine-asparagine (TPVN). We have run replica exchange molecular dynamics (REMD) simulations and used 120 configurational snapshots from the total trajectory as starting configurations for quantum chemical calculations. We optimized structures using semiempirical (PM3, PM6, PM6-D2, PM6-H2, PM6-DH+, PM6-DH2) and density functional methods (TPSS, PBE0, M06-2X). By comparing the accuracy of these methods against RI-MP2 benchmarks, we devised a protocol for calculating the lowest energy conformers of these peptides accurately and efficiently. This protocol screens out high-energy conformers using lower levels of theory and outlines a general method for predicting small peptide structures.
Resumo:
Insulin-like growth factor I (IGF-I) plays a key role in the complex system that regulates bony fish growth, differentiation, and reproduction. The major source of circulating IGF-I is liver, but IGF-I-producing cells also occur in other organs, including the gonads. Because no data are available on the potential production sites of IGF-I in gonad development, developmental stages of monosex breedings of male and female tilapia from 0 day postfertilization (DPF) to 90 DPF were investigated for the production sites of IGF-I at the peptide (immunohistochemistry) and mRNA (in situ hybridization) level. IGF-I mRNA first appeared in somatic cells of the male and female gonad anlage at 7 DPF followed by IGF-I peptide around 9-10 DPF. Gonad anlagen were detected from 7 DPF. Starting at 7 DPF, IGF-I peptide but no IGF-I mRNA was observed in male and female primordial germ cells (PGCs) provided that IGF-I mRNA was not under the detection level, this observation may suggest that IGF-I originates from the somatic cells and is transferred to the PGCs or is of maternal origin. While in female germ cells IGF-I mRNA and peptide appeared at 29 DPF, in male germ cells both were detected as late as at 51-53 DPF. It is assumed that the production of IGF-I in the germ cells is linked to the onset of meiosis that in tilapia ovary starts at around 28 DPF and in testes at around 52-53 DPF. In adult testis, IGF-I mRNA and peptide occurred in the majority of spermatogonia and spermatocytes as well as in Leydig cells, the latter indicating a role of IGF-I in the synthesis of male sex steroids. In adult ovary, IGF-I mRNA and IGF-I peptide were always present in small and previtellogenic oocytes but only IGF-I peptide infrequently occurred in oocytes at the later stages. IGF-I expression appeared in numerous granulosa and some theca cells of follicles at the lipid stage and persisted in follicles with mature oocytes. The results suggest a crucial role of local IGF-I in the formation, differentiation and function of tilapia gonads.
Resumo:
The ydgR gene of Escherichia coli encodes a protein of the proton-dependent oligopeptide transporter (POT) family. We cloned YdgR and overexpressed the His-tagged fusion protein in E. coli BL21 cells. Bacterial growth inhibition in the presence of the toxic phosphonopeptide alafosfalin established YgdR functionality. Transport was abolished in the presence of the proton ionophore carbonyl cyanide p-chlorophenylhydrazone, suggesting a proton-coupled transport mechanism. YdgR transports selectively only di- and tripeptides and structurally related peptidomimetics (such as aminocephalosporins) with a substrate recognition pattern almost identical to the mammalian peptide transporter PEPT1. The YdgR protein was purified to homogeneity from E. coli membranes. Blue native-polyacrylamide gel electrophoresis and transmission electron microscopy of detergent-solubilized YdgR suggest that it exists in monomeric form. Transmission electron microscopy revealed a crown-like structure with a diameter of approximately 8 nm and a central density. These are the first structural data obtained from a proton-dependent peptide transporter, and the YgdR protein seems an excellent model for studies on substrate and inhibitor interactions as well as on the molecular architecture of cell membrane peptide transporters.
Resumo:
The role of colostrum and milk in the neonate has been chiefly recognized as a comprehensive nutrient foodstuff. In addition, the provision of colostrum-the first milk-for early immune capacity has been well documented for several species. Colostrum is additionally a rich and concentrated source of various factors that demonstrate biological activity in vitro. Three hypotheses have been proposed for the phenotypic function of these secreted bioactive components: (1) only mammary disposal, (2) mammary cell regulation, and (3) neonatal function [gastrointestinal tract (GIT) or systemic]. Traditionally, it was assumed that the development of the GIT is preprogrammed and not influenced by events occurring in the intestinal lumen. However, a large volume of research has demonstrated that colostrum (or milk-borne) bioactive components can basically contribute to the regulation of GIT growth and differentiation, while their role in postnatal development at physiological concentrations has remained elusive. Much of our current understanding is derived from cell culture and laboratory animals, but experimentation with agriculturally important species is taking place. This chapter provides an overview of work conducted primarily in neonatal calves and secondarily in other species on the effects on neonates of selected peptide endocrine factors (hormones, growth factors, in part cytokines) in colostrum. The primary focus will be on insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) and other bioactive peptides, but new interest and concern about steroids (especially estrogens) in milk are considered as well.
Resumo:
A protein of a biological sample is usually quantified by immunological techniques based on antibodies. Mass spectrometry offers alternative approaches that are not dependent on antibody affinity and avidity, protein isoforms, quaternary structures, or steric hindrance of antibody-antigen recognition in case of multiprotein complexes. One approach is the use of stable isotope-labeled internal standards; another is the direct exploitation of mass spectrometric signals recorded by LC-MS/MS analysis of protein digests. Here we assessed the peptide match score summation index based on probabilistic peptide scores calculated by the PHENYX protein identification engine for absolute protein quantification in accordance with the protein abundance index as proposed by Mann and co-workers (Rappsilber, J., Ryder, U., Lamond, A. I., and Mann, M. (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231-1245). Using synthetic protein mixtures, we demonstrated that this approach works well, although proteins can have different response factors. Applied to high density lipoproteins (HDLs), this new approach compared favorably to alternative protein quantitation methods like UV detection of protein peaks separated by capillary electrophoresis or quantitation of protein spots on SDS-PAGE. We compared the protein composition of a well defined HDL density class isolated from plasma of seven hypercholesterolemia subjects having low or high HDL cholesterol with HDL from nine normolipidemia subjects. The quantitative protein patterns distinguished individuals according to the corresponding concentration and distribution of cholesterol from serum lipid measurements of the same samples and revealed that hypercholesterolemia in unrelated individuals is the result of different deficiencies. The presented approach is complementary to HDL lipid analysis; does not rely on complicated sample treatment, e.g. chemical reactions, or antibodies; and can be used for projective clinical studies of larger patient groups.
Resumo:
Endothelin-1 (ET-1) is mainly secreted by endothelial cells and acts as a potent vasoconstrictor. In addition ET-1 has also been shown to have pleiotropic effects on a variety of other systems including adaptive immunity. There are two main ET-1 receptors, ET(A) and ET(B), which have different tissue and functional distributions. Dendritic cells (DC) are pivotal antigen-presenting cells linking the innate with the adaptive immune system. DC are sentinels expressing pattern-recognition receptors, e.g. the toll-like receptors (TLR) for detecting danger signals released from pathogens or tissue injury. Here we show for the first time that stimulation of human monocyte-derived DC with exogenous as well as endogenous selective TLR4 and TLR2 agonists induces the production of ET-1 in a dose- and time-dependent manner. 'Alternative' activation of DC in the presence of 1alpha,25-dihydroxyvitamin D(3) results in a marked potentiation of the endothelin response, whereas prostaglandin E(2) or dexamethasone do not increase ET-1 production. Furthermore, chetomin, an inhibitor of the transcription factor hypoxia-inducible factor 1alpha (HIF-1alpha), prevents TLR-mediated secretion of ET-1. Surprisingly, stimulation of human monocytes with LPS does not lead to secretion of detectable amounts of ET-1. These results suggest a role of ET-1 as an important player in human DC biology and innate immunity in general.
Resumo:
Previous studies in our laboratory have indicated that heparan sulfate proteoglycans (HSPGs) play an important role in murine embryo implantation. To investigate the potential function of HSPGs in human implantation, two human cell lines (RL95 and JAR) were selected to model uterine epithelium and embryonal trophectoderm, respectively. A heterologous cell-cell adhesion assay showed that initial binding between JAR and RL95 cells is mediated by cell surface glycosaminoglycans (GAG) with heparin-like properties, i.e., heparan sulfate and dermatan sulfate. Furthermore, a single class of highly specific, protease-sensitive heparin/heparan sulfate binding sites exist on the surface of RL95 cells. Three heparin binding, tryptic peptide fragments were isolated from RL95 cell surfaces and their amino termini partially sequenced. Reverse transcription-polymerase chain reaction (RT-PCR) generated 1 to 4 PCR products per tryptic peptide. Northern blot analysis of RNA from RL95 cells using one of these RT-PCR products identified a 1.2 Kb mRNA species (p24). The amino acid sequence predicted from the cDNA sequence contains a putative heparin-binding domain. A synthetic peptide representing this putative heparin binding domain was used to generate a rabbit polyclonal antibody (anti-p24). Indirect immunofluorescence studies on RL95 and JAR cells as well as binding studies of anti-p24 to intact RL95 cells demonstrate that p24 is distributed on the cell surface. Western blots of RL95 membrane preparations identify a 24 kDa protein (p24) highly enriched in the 100,000 g pellet plasma membrane-enriched fraction. p24 eluted from membranes with 0.8 M NaCl, but not 0.6 M NaCl, suggesting that it is a peripheral membrane component. Solubilized p24 binds heparin by heparin affinity chromatography and $\sp{125}$I-heparin binding assays. Furthermore, indirect immunofluorescence studies indicate that cytotrophoblast of floating and attached villi of the human fetal-maternal interface are recognized by anti-p24. The study also indicates that the HSPG, perlecan, accumulates where chorionic villi are attached to uterine stroma and where p24-expressing cytotrophoblast penetrate the stroma. Collectively, these data indicate that p24 is a cell surface membrane-associated heparin/heparan sulfate binding protein found in cytotrophoblast, but not many other cell types of the fetal-maternal interface. Furthermore, p24 colocalizes with HSPGs in regions of cytotrophoblast invasion. These observations are consistent with a role for HSPGs and HSPG binding proteins in human trophoblast-uterine cell interactions. ^