957 resultados para cell viability
Resumo:
Natural products are an inexhaustible source of compounds with promising pharmacological activities including antiviral action. Violacein, the major pigment produced by Chromobacterium violaceum, has been shown to have antibiotic, antitumoral and anti-Trypanosoma cruzi activities. The goal of the present work was to evaluate the cytotoxicity of violacein and also its potential antiviral properties.The cytotoxicity of violacein was investigated by three methods: cell morphology evaluation by inverted light microscopy and cell viability tests using the Trypan blue dye exclusion method and the MTT assay. The cytotoxic concentration values which cause destruction in 50% of the monolayer cells (CC50) were different depending on the sensitivity of the method. CC50 values were > 2.07 ± 0.08 µM for FRhK-4 cells: > 2.23 ± 0.11 µM for Vero cells; > 2.54 ± 0.18 µM for MA104 cells; and > 2.70 ± 0.20 µM for HEp-2 cells. Violacein showed no cytopathic inhibition of the following viruses: herpes simplex virus type 1 (HSV-1) strain 29-R/acyclovir resistant, hepatitis A virus (strains HM175 and HAF-203) and adenovirus type 5 nor did it show any antiviral activity in the MTT assay. However violacein did show a weak inhibition of viral replication: 1.42 ± 0.68%, 14.48 ± 5.06% and 21.47 ± 3.74% for HSV-1 (strain KOS); 5.96 ± 2.51%, 8.75 ± 3.08% and 17.75 ± 5.19% for HSV-1 (strain ATCC/VR-733); 5.13 ± 2.38 %, 8.18 ± 1.11% and 8.51 ± 1.94% for poliovirus type 2; 8.30 ± 4.24%; 13.33 ± 4.66% and 24.27 ± 2.18% for simian rotavirus SA11, at 0.312, 0.625 and 1.250 mM, respectively, when measured by the MTT assay.
Resumo:
We investigated the in vitro action of an hydrosoluble 2-nitroimidazole, Etanidazole (EZL), against Trypanosoma cruzi, the etiologic agent of Chagas disease. EZL displayed lethal activity against isolated trypomastigotes as well as amastigotes of T. cruzi (RA strain) growing in Vero cells or J774 macrophages, without affecting host cell viability. Although not completely equivalent to Benznidazole (BZL), the reference drug for Chagas chemotherapy, EZL takes advantage in exertingits anti-T. cruzi activity for longer periods without serious toxic side effects, as those recorded in BZL-treated patients. Our present results encourage further experiments to study in depth the trypanocidal properties of this drug already licensed for use in human cancers.
Resumo:
Rotaviruses have been implicated as the major causal agents of acute diarrhoea in mammals and fowls. Experimental rotavirus infection have been associated to a series of sub-cellular pathologic alterations leading to cell lysis which may represent key functions in the pathogenesis of the diarrhoeic disease. The current work describes the cytopathic changes in cultured MA-104 cells infected by a simian (SA-11) and a porcine (1154) rotavirus strains. Trypan blue exclusion staining showed increased cell permeability after infection by both strains, as demonstrated by cell viability. This effect was confirmed by the leakage of infected cells evaluated by chromium release. Nuclear fragmentation was observed by acridine orange and Wright staining but specific DNA cleavage was not detected. Ultrastructural changes, such as chromatin condensation, cytoplasm vacuolisation, and loss of intercellular contact were shown in infected cells for both strains. In situ terminal deoxynucleotidyl transferase (Tunel) assay did not show positive result. In conclusion, we demonstrated that both strains of rotavirus induced necrosis as the major degenerative effect.
Resumo:
Bone substitute materials allowing trans-scaffold migration and in-scaffold survival of human bone-derived cells are mandatory for development of cell-engineered permanent implants to repair bone defects. In this study, we evaluated the influence on human bone-derived cells of the material composition and microstructure of foam scaffolds of calcium aluminate. The scaffolds were prepared using a direct foaming method allowing wide-range tailoring of the microstructure for pore size and pore openings. Human fetal osteoblasts (osteo-progenitors) attached to the scaffolds, migrated across the entire bioceramic depending on the scaffold pore size, colonized, and survived in the porous material for at least 6 weeks. The long-term biocompatibility of the scaffold material for human bone-derived cells was evidenced by in-scaffold determination of cell metabolic activity using a modified MTT assay, a repeated WST-1 assay, and scanning electron microscopy. Finally, we demonstrated that the osteo-progenitors can be covalently bound to the scaffolds using biocompatible click chemistry, thus enhancing the rapid adhesion of the cells to the scaffolds. Therefore, the different microstructures of the foams influenced the migratory potential of the cells, but not cell viability. Scaffolds allow covalent biocompatible chemical binding of the cells to the materials, either localized or widespread integration of the scaffolds for cell-engineered implants.
Resumo:
The aim of this work is to describe the techniques that have been used for preparation and analysis of whole fetal liver extracts destined for in utero transplantation. Nine fetal livers between 12 and 17 weeks of gestation were prepared: cell counts and assessment of the hematopoietic cell viability were performed on cell suspensions. Hepatocytes represented 40 to 80% of the whole cell population. The remaining cells were constituted by hematopoietic cells (mainly erythroblasts), as well as by endothelial cells. The latter expressed CD34 on their surface, interfering with the assessment of CD34+ hematopoietic cells by flow cytometry. Direct visual morphologic control using alkaline phosphatase anti-alkaline phosphatase techniques was needed to differentiate hematopoietic from extra-hematopoietic CD34+ cells. Between 3.0 and 34.6 x 10(6) CD34+ viable hematopoietic cells were collected per fetal liver. Adequate differentiation of these cells into burst-forming units erythroid (BFU-E), colony-forming units granulocyte-macrophage (CFU-GM), and colony-forming units granulocyte erythroid macrophage megakaryocyte (CFU-GEMM) has been shown for each sample in clonogeneic cultures. In conclusion, fetal liver is a potential source of hematopoietic stem cells. Their numeration, based on the presence of CD34, is hampered by the expression of this antigen on other cells contained in the liver cell extract, in particular endothelial cells.
Resumo:
Reconstruction of large oral mucosa defects is often challenging, since the shortage of healthy oral mucosa to replace the excised tissues is very common. In this context, tissue engineering techniques may provide a source of autologous tissues available for transplant in these patients. In this work, we developed a new model of artificial oral mucosa generated by tissue engineering using a fibrin-agarose scaffold. For that purpose, we generated primary cultures of human oral mucosa fibroblasts and keratinocytes from small biopsies of normal oral mucosa using enzymatic treatments. Then we determined the viability of the cultured cells by electron probe quantitative X-ray microanalysis, and we demonstrated that most of the cells in the primary cultures were alive and had high K/Na ratios. Once cell viability was determined, we used the cultured fibroblasts and keratinocytes to develop an artificial oral mucosa construct by using a fibrin-agarose extracellular matrix and a sequential culture technique using porous culture inserts. Histological analysis of the artificial tissues showed high similarities with normal oral mucosa controls. The epithelium of the oral substitutes had several layers, with desmosomes and apical microvilli and microplicae. Both the controls and the oral mucosa substitutes showed high suprabasal expression of cytokeratin 13 and low expression of cytokeratin 10. All these results suggest that our model of oral mucosa using fibrin-agarose scaffolds show several similarities with native human oral mucosa.
Resumo:
Trimethyltin (TMT) is a neurotoxicant known to induce early microglial activation. The present study was undertaken to investigate the role played by these microglial cells in the TMT-induced neurotoxicity. The effects of TMT were investigated in monolayer cultures of isolated microglia or in neuron-enriched cultures and in neuron-microglia and astrocyte-microglia cocultures. The end points used were morphological criteria; evaluation of cell death and cell proliferation; and measurements of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and nitric oxide (NO) release in culture supernatant. The results showed that, in cultures of microglia, TMT (10(-6) M) caused, after a 5-day treatment, an increased release of TNF-alpha, without affecting microglial shape or cell viability. When microglia were cocultured with astrocytes, TNF-alpha release was decreased to undetectable levels. In contrast, in neuron-microglia cocultures, TNF-alpha levels were found to increase at lower concentrations of TMT (i.e., 10(-8) M). Moreover, at 10(-6) M of TMT, microglia displayed further morphological activation, as suggested by process retraction and by decrease in cell size. No morphological activation was observed in cultures of isolated microglial cells and in astrocyte-microglia cocultures. With regard to neurons, 10(-6) M of TMT induced about 30% of cell death, when applied to neuron-enriched cultures, whereas close to 100% of neuronal death was observed in neuron-microglia cocultures. In conclusion, whereas astrocytes may rather dampen the microglial activation by decreasing microglial TNF-alpha production, neuronal-microglial interactions lead to enhanced microglial activation. This microglial activation, in turn, exacerbates the neurotoxic effects of TMT. TNF-alpha may play a major role in such cell-cell communications.
Resumo:
Several protozoan parasites exist in the Trypanosomatidae family, including various agents of human diseases. Multiple lines of evidence suggest that important differences are present between the translational and mRNA processing (trans splicing) systems of trypanosomatids and other eukaryotes. In this context, certain small complexes of RNA and protein, which are named small nuclear ribonucleoproteins (U snRNPs), have an essential role in pre-mRNA processing, mainly during splicing. Even though they are well defined in mammals, snRNPs are still not well characterized in trypanosomatids. This study shows that a U5-15K protein is highly conserved among various trypanosomatid species. Tandem affinity pull-down assays revealed that this protein interacts with a novel U5-102K protein, which suggests the presence of a sub-complex that is potentially involved in the assembly of U4/U6-U5 tri-snRNPs. Functional analyses showed that U5-15K is essential for cell viability and is somehow involved with the trans and cis splicing machinery. Similar tandem affinity experiments with a trypanonosomatid U5-Cwc21 protein led to the purification of four U5 snRNP specific proteins and a Sm core, suggesting U5-Cwc-21 participation in the 35S U5 snRNP particle. Of these proteins, U5-200K was molecularly characterized. U5-200K has conserved domains, such as the DEAD/DEAH box helicase and Sec63 domains and displays a strong interaction with U5 snRNA.
Resumo:
This paper evaluates CHCl3 and CH3OH extracts of the stem bark, branches and leaves of Drimys brasiliensis and drimane sesquiterpenes isolated from the stem bark against strains of Leishmania amazonensis and Leishmania braziliensis promastigotes and Plasmodium falciparum trophozoites. All of the extracts and compounds were tested in cell lines in comparison with reference standards and cell viability was determined by the XTT method. The CHCl3 and CH3OH extracts from the stem bark and branches yielded promising results against two strains of Leishmania, with 50% inhibitory concentrations (IC50 ) values ranging from 39-100 µg/mL. The CHCl3 extract of the stem bark returned IC50 values of 39 and 40.6 µg/mL for L. amazonensis and L. braziliensis, respectively. The drimanes were relatively effective: 1-β-(p-coumaroyloxy)-polygodial produced IC50 values of 5.55 and 2.52 µM for L. amazonensis and L. braziliensis, respectively, compared with 1-β-(p-methoxycinnamoyl)-polygodial, which produced respective IC50 values of 15.85 and 17.80 µM. The CHCl3 extract demonstrated activity (IC50 of 3.0 µg/mL) against P. falciparum. The IC50 values of 1-β-(p-cumaroyloxyl)-polygodial and 1-β-(p-methoxycinnamoyl)-polygodial were 1.01 and 4.87 µM, respectively, for the trophozoite strain. Therefore, the results suggest that D. brasiliensis is a promising plant from which to obtain new and effective antiparasitic agents.
Resumo:
Growing evidence suggests that the bacterium Waddlia chondrophila, a novel member of the Chlamydiales order, is an agent of miscarriage in humans and abortion in ruminants. We thus investigated the permissivity of three epithelial cell lines, primate Vero kidney cells, human A549 pneumocytes and human Ishikawa endometrial cells to this strict intracellular bacteria. Bacterial growth kinetics in these cell lines was assessed by quantitative PCR and immunofluorescence and our results demonstrated that W. chondrophila enters and efficiently multiplies in these epithelial cell lines. Additionally, confocal and electron microscopy indicated that the bacteria co-localize with host cell mitochondria. Within Vero and A549 cells, intracellular growth of W. chondrophila was associated with a significant decrease in host cell viability while no such cytophatic effect was detected in Ishikawa cells. Bacterial cell growth in this endometrial cell line stopped 48 h after infection. This stop in the replication of W. chondrophila coincided with the appearance of large aberrant bodies, a form of the bacteria also observed in Chlamydiaceae and associated with persistence. This persistent state of W. chondrophila may explain recurrent episodes of miscarriage in vivo, since the bacteria might reactivate within endometrial cells following hormonal changes that occur during pregnancy.
Resumo:
PURPOSE: To optimize conditions for photodynamic detection (PDD) and photodynamic therapy (PDT) of bladder carcinoma, urothelial accumulation of protoporphyrin IX (PpIX) and conditions leading to cell photodestruction were studied. MATERIALS AND METHODS: Porcine and human bladder mucosae were superfused with derivatives of 5-aminolevulinic acid (ALA). PpIX accumulation and distribution across the mucosa was studied by microspectrofluorometry. Cell viability and structural integrity were assessed by using vital dyes and microscopy. RESULTS: ALA esters, especially hexyl-ALA, accelerated and regularized urothelial PpIX accumulation and allowed for necrosis upon illumination. CONCLUSIONS: hexyl-ALA used at micromolar concentrations is the most efficient PpIX precursor for PDD and PDT.
Resumo:
PURPOSE: This study investigates the effects of triamcinolone acetonide (TA) on retinal endothelial cells in vitro and explores the potential vascular toxic effect of TA injected into the vitreous cavity of rats in vivo. METHODS: Subconfluent endothelial cells were treated with either 0.1 mg/ml or 1 mg/ml TA in 1% ethanol. Control cells were either untreated or exposed to 1% ethanol. Cell viability was evaluated at 24 h, 72 h, and five days using the tetrazolium 3-(4,5-dimethylthiazol-2-yl)-2,5 phenyltetrazolium bromide test (MTT) and lactate dehydrogenase (LDH) assays. Cell proliferation was evaluated by 5-bromo-2-deoxyuridine (BrdU) test. Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling assay (TUNEL assay), annexin-binding, and caspase 3 activation. Caspase-independent cell deaths were investigated by immunohistochemistry using antibodies against apoptosis inducing factor (AIF), cytochrome C, microtubule-associated protein (MAP)-light chain 3 (MAP-LC3), and Leukocyte Elastase Inhibitor/Leukocyte Elastase Inhibitor-derived DNase II (LEI/L-DNase II). In vivo, semithin and ultrathin structure analysis and vascular casts were performed to examine TA-induced changes of the choroidal vasculature. In addition, outer segments phagocytosis assay on primary retinal pigment epithelium (RPE) cells was performed to assess cyclooxygenase (COX-2) and vascular endothelial growth factor (VEGF) mRNAs upregulation with or without TA. RESULTS: The inhibitory effect of TA on cell proliferation could not explain the significant reduction in cell viability. Indeed, TA induced a time-dependent reduction of bovine retinal endothelial cells viability. Annexin-binding positive cells were observed. Cytochrome C was not released from mitochondria. L-DNase II was found translocated to the nucleus, meaning that LEI was changed into L-DNase II. AIF was found nuclearized in some cells. LC3 labeling showed the absence of autophagic vesicles. No autophagy or caspase dependent apoptosis was identified. At 1 mg/ml TA induced necrosis while exposure to lower concentrations for 3 to 5 days induced caspase independent apoptosis involving AIF and LEI/L-DNase II. In vivo, semithin and ultrathin structure analysis and vascular casts revealed that TA mostly affected the choroidal vasculature with a reduction of choroidal thickness and increased the avascular areas of the choriocapillaries. Experiments performed on primary RPE cells showed that TA downregulates the basal expression of COX-2 and VEGF and inhibits the outer segments (OS)-dependent COX-2 induction but not the OS-dependent VEGF induction. CONCLUSIONS: This study demonstrates for the first time that glucocorticoids exert direct toxic effect on endothelial cells through caspase-independent cell death mechanisms. The choroidal changes observed after TA intravitreous injection may have important implications regarding the safety profile of TA use in human eyes.
Resumo:
Antigen-specific T-cell activation implicates a redistribution of plasma membrane-bound molecules in lipid rafts, such as the coreceptors CD8 and CD4, the Src kinases Lek and Fyn, and the linker for activation of T cells (LAT), that results in the formation of signaling complexes. These molecules partition in lipid rafts because of palmitoylation of cytoplasmic, membrane proximal cysteines, which is essential for their functional integrity in T-cell activation. Here, we show that exogenous dipalmitoyl-phosphatidylethanolamine (DPPE), but not the related unsaturated dioleoyl-phosphatidylethanolamine (DOPE), partitions in lipid rafts. DPPE inhibits activation of CD8(+) T lymphocytes by sensitized syngeneic antigen-presenting cells or specific major histocompatibility complex (MHC) peptide tetramers, as indicated by esterase release and intracellular calcium mobilization. Cytotoxic, T lymphocyte (CTL)-target cell conjugate formation is not affected by DPPE, indicating that engagement of the T-cell receptor by its cognate ligand is intact in lipid-treated cells. In contrast to other agents known to block raft-dependent signaling, DPPE efficiently inhibits the MHC peptide-induced recruitment of palmitoylated signaling molecules to lipid rafts and CTL activation without affecting cell viability or lipid raft integrity.
Resumo:
* The 'in planta' visualization of F-actin in all cells and in all developmental stages of a plant is a challenging problem. By using the soybean heat inducible Gmhsp17.3B promoter instead of a constitutive promoter, we have been able to label all cells in various developmental stages of the moss Physcomitrella patens, through a precise temperature tuning of the expression of green fluorescent protein (GFP)-talin. * A short moderate heat treatment was sufficient to induce proper labeling of the actin cytoskeleton and to allow the visualization of time-dependent organization of F-actin structures without impairment of cell viability. * In growing moss cells, dense converging arrays of F-actin structures were present at the growing tips of protonema cell, and at the localization of branching. Protonema and leaf cells contained a network of thick actin cables; during de-differentiation of leaf cells into new protonema filaments, the thick bundled actin network disappeared, and a new highly polarized F-actin network formed. * The controlled expression of GFP-talin through an inducible promoter improves significantly the 'in planta' imaging of actin.
Resumo:
Maintenance of corneal transparency is crucial for vision and depends mainly on the endothelium, a non-proliferative monolayer of cells covering the inner part of the cornea. When endothelial cell density falls below a critical threshold, the barrier and "pump" functions of the endothelium are compromised which results in corneal oedema and loss of visual acuity. The conventional treatment for such severe disorder is corneal graft. Unfortunately, there is a worldwide shortage of donor corneas, necessitating amelioration of tissue survival and storage after harvesting. Recently it was reported that the ROCK inhibitor Y-27632 promotes adhesion, inhibits apoptosis, increases the number of proliferating monkey corneal endothelial cells in vitro and enhance corneal endothelial wound healing both in vitro and in vivo in animal models. Using organ culture human cornea (N = 34), the effect of ROCK inhibitor was evaluated in vitro and ex vivo. Toxicity, corneal endothelial cell density, cell proliferation, apoptosis, cell morphometry, adhesion and wound healing process were evaluated by live/dead assay standard cell counting method, EdU labelling, Ki67, Caspase3, Zo-1 and Actin immunostaining. We demonstrated for the first time in human corneal endothelial cells ex vivo and in vitro, that ROCK inhibitor did not induce any toxicity effect and did not alter cell viability. ROCK inhibitor treatment did not induce human corneal endothelial cells proliferation. However, ROCK inhibitor significantly enhanced adhesion and wound healing. The present study shows that the selective ROCK inhibitor Y-27632 has no effect on human corneal endothelial cells proliferative capacities, but alters cellular behaviours. It induces changes in cell shape, increases cell adhesion and enhances wound healing ex vivo and in vitro. Its absence of toxicity, as demonstrated herein, is relevant for its use in human therapy.