959 resultados para cell structure
Resumo:
Dense granular bodies (DGB) are particular structural constituents observed in cell nuclei of different tissues-liver, pancreas, brown adipose tissue, adrenal cortex-of hibernating dormice. They appear as strongly electron-dense clusters of closely packed granules, with thin fibrils spreading out at their periphery. DGB always occur in the nucleoplasm, sometimes making contact with other nuclear structural constituents typical of the hibernating state, such as coiled bodies, amorphous bodies and nucleoplasmic fibrils. DGB are present only during deep hibernation and rapidly disappear upon arousal from hibernation. Cytochemical and immunocytochemical analyses showed that DGB contain ribonucleoproteins and several nucleoplasmic RNA processing factors, suggesting that DGB can represent accumulation sites of splicing factors which are provided to splicing sites when normal metabolic activity is rapidly restored during arousal.
Resumo:
Integrin receptors are the main mediators of cell adhesion to the extracellular matrix. They bind to their ligands by interacting with short amino acid sequences, such as the RGD sequence. Soluble, small RGD-based peptides have been used to block integrin-binding to ligands, thereby interfering with cell adhesion, migration and survival, while substrate-immobilized RGD sequences have been used to enhance cell binding to artificial surfaces. This approach has several important medical applications, e.g. in suppression of tumor angiogenesis or stimulation of bone formation around implants. However, the relatively weak affinity of short RGD-containing peptides often results in incomplete integrin inhibition or ineffective ligation. In this work, we designed and synthesized several new multivalent RGD-containing molecules and tested their ability to inhibit or to promote integrin-dependent cell adhesion when used in solution or immobilized on substrates, respectively. These molecules consist of an oligomeric structure formed by alpha-helical coiled coil peptides fused at their amino-terminal ends with an RGD-containing fragment. When immobilized on a substrate, these peptides specifically promoted integrin alphaVbeta3-dependent cell adhesion, but when used in solution, they blocked alphaVbeta3-dependent cell adhesion to the natural substrates fibronectin and vitronectin. One of the peptides was nearly 10-fold more efficient than fibronectin or vitronectin in promoting cell adhesion, and almost 100-fold more efficient than a linear RGD tripeptide in blocking adhesion. These results indicate that alpha-helical coiled coil peptides carrying an amino-terminal RGD motif can be used as soluble antagonists or surface-immobilized agonists to efficiently inhibit or promote integrin alphaVbeta3-mediated cell adhesion, respectively.
Resumo:
In normal mice, the lentiviral vector (LV) is very efficient to target the RPE cells, but transduces retinal neurons well only during development. In the present study, the tropism of LV has been investigated in the degenerating retina of mice, knowing that the retina structure changes during degeneration. We postulated that the viral transduction would be increased by the alteration of the outer limiting membrane (OLM). Two different LV pseudotypes were tested using the VSVG and the Mokola envelopes, as well as two animal models of retinal degeneration: light-damaged Balb-C and Rhodopsin knockout (Rho-/-) mice. After light damage, the OLM is altered and no significant increase of the number of transduced photoreceptors can be obtained with a LV-VSVG-Rhop-GFP vector. In the Rho-/- mice, an alteration of the OLM was also observed, but the possibility of transducing photoreceptors was decreased, probably by ongoing gliosis. The use of a ubiquitous promoter allows better photoreceptor transduction, suggesting that photoreceptor-specific promoter activity changes during late stages of photoreceptor degeneration. However, the number of targeted photoreceptors remains low. In contrast, LV pseudotyped with the Mokola envelope allows a wide dispersion of the vector into the retina (corresponding to the injection bleb) with preferential targeting of Müller cells, a situation which does not occur in the wild-type retina. Mokola-pseudotyped lentiviral vectors may serve to engineer these glial cells to deliver secreted therapeutic factors to a diseased area of the retina.
Resumo:
Although the assembly of a ternary complex between the SNARE proteins syntaxin-1, SNAP25 and VAMP2 is known to be crucial for insulin exocytosis, the mechanisms controlling this key event are poorly understood. We found that pancreatic beta-cells express different isoforms of tomosyn-1, a syntaxin-1-binding protein possessing a SNARE-like motif. Using atomic force microscopy we show that the SNARE-like domain of tomosyn-1 can form a complex with syntaxin-1 and SNAP25 but displays binding forces that are weaker than those observed for VAMP2 (237+/-13 versus 279+/-3 pN). In pancreatic beta-cells tomosyn-1 was found to be concentrated in cellular compartments enriched in insulin-containing secretory granules. Silencing of tomosyn-1 in the rat beta-cell line INS-1E by RNA interference did not affect the number of secretory granules docked at the plasma membrane but led to a reduction in stimulus-induced exocytosis. Replacement of endogenous tomosyn-1 with mouse tomosyn-1, which differs in the nucleotide sequence from its rat homologue and escapes silencing, restored a normal secretory rate. Taken together, our data suggest that tomosyn-1 is involved in a post-docking event that prepares secretory granules for fusion and is necessary to sustain exocytosis of pancreatic beta-cells in response to insulin secretagogues.
Resumo:
A PRoliferation-Inducing TNF Ligand (APRIL) costimulates B-cell activation. When overexpressed in mice, APRIL induces B-cell neoplasia, reminiscent of human B-cell chronic lymphoid leukemia (B-CLL). We analyzed APRIL expression in situ in human non-Hodgkin lymphomas. APRIL up-regulation was only observed in high-grade B-cell lymphomas, diffuse large B-cell lymphoma (DLBCL), and Burkitt lymphoma (BL). Up-regulation was seen in 46% and 20% of DLBCL and BL, respectively. In DLBCL, neutrophils, constitutively producing APRIL and infiltrating the tumor tissue, were the main cellular source of APRIL. Rare DLBCL cases showed a predominance of histiocytes or mesenchymal cells as APRIL source. APRIL secreted by neutrophils accumulated on tumor cells via proteoglycan binding. In addition to proteoglycans, DLBCL tumor cells expressed the APRIL signaling receptor, TACI and/or BCMA, indicating that these tumor cells are fully equipped to respond to APRIL. A retrospective clinical analysis revealed a significant correlation between high expression of APRIL in tumor lesions and decreased overall patient survival rate. Hence, APRIL produced by inflammatory cells infiltrating lymphoma lesions may increase tumor aggressiveness and affect disease outcome.
Resumo:
A new culture model was developed to study the role of proliferation and apoptosis in the etiology of keloids. Fibroblasts were isolated from the superficial, central, and basal regions of six different keloid lesions by using Dulbecco's Modified Eagle Medium containing 10% fetal calf serum as a culture medium. The growth behavior of each fibroblast fraction was examined in short-term and long-term cultures, and the percentage of apoptotic cells was assessed by in situ end labeling of fragmented DNA. The fibroblasts obtained from the superficial and basal regions of keloid tissue showed population doubling times and saturation densities that were similar to those of age-matched normal fibroblasts. In contrast, the fibroblasts from the center of the keloid lesions showed significantly reduced doubling times (25.9 +/- 6.3 hours versus 43.5 +/- 6.3 hours for normal fibroblasts) and reached higher cell densities. In long-term culture, central keloid fibroblasts formed a stratified three-dimensional structure, contracted the self-produced extracellular matrix, and gave rise to nodular cell aggregates, mimicking the formation of keloid tissue. Apoptotic cells were detected in both normal and keloid-derived fibroblasts, but their numbers were twofold higher in normal cells compared with all keloid fibroblasts. To examine whether apoptosis mediates the therapeutic effect of ionizing radiation on keloids, the cells were exposed to gamma rays at a dose of 8 Gy. Under these conditions, a twofold increase in the population of apoptotic cells was detected. These results indicate that the balance between proliferation and apoptosis is impaired in keloid fibroblasts, which could be responsible for the formation of keloid tumors. The results also suggest that keloids contain at least two different fibroblast fractions that vary in growth behavior and extracellular matrix metabolism.
Resumo:
Recent research has examined the factors controlling the geometrical configuration of bifurcations, determined the range of stability conditions for a number of bifurcation types and assessed the impact of perturbations on bifurcation evolution. However, the flow division process and the parameters that influence flow and sediment partitioning are still poorly characterized. To identify and isolate these parameters, three-dimensional velocities were measured at 11 cross-sections in a fixed-walled experimental bifurcation. Water surface gradients were controlled, and systematically varied, using a weir in each distributary. As may be expected, the steepest distributary conveyed the most discharge ( was dominant) while the mildest distributary conveyed the least discharge ( was subordinate). A zone of water surface super-elevation was co-located with the bifurcation in symmetric cases or displaced into the subordinate branch in asymmetric cases. Downstream of a relatively acute-angled bifurcation, primary velocity cores were near to the water surface and against the inner banks, with near-bed zones of lower primary velocity at the outer banks. Downstream of an obtuse-angled bifurcation, velocity cores were initially at the outer banks, with near-bed zones of lower velocities at the inner banks, but patterns soon reverted to match the acute-angled case. A single secondary flow cell was generated in each distributary, with water flowing inwards at the water surface and outwards at the bed. Circulation was relatively enhanced within the subordinate branch, which may help explain why subordinate distributaries remain open, may play a role in determining the size of commonly-observed topographic features, and may thus exert some control on the stability of asymmetric bifurcations. Further, because larger values of circulation result from larger gradient disadvantages, the length of confluence-diffluence units in braided rivers or between diffluences within delta distributary networks may vary depending upon flow structures inherited from upstream and whether, and how, they are fed by dominant or subordinate distributaries. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Cell surface receptors bind ligands expressed on other cells (in trans) in order to communicate with neighboring cells. However, an increasing number of cell surface receptors are found to also interact with ligands expressed on the same cell (in cis). These observations raise questions regarding the biological role of such cis interactions. Specifically, it is important to know whether cis and trans binding have distinct functional effects and, if so, how a single cell discriminates between interactions in cis versus trans. Further, what are the structural features that allow certain cell surface receptors to engage ligand both on the same as well as on an apposed cell membrane? Here, we summarize known examples of receptors that display cis-trans binding and discuss the emerging diversity of biological roles played by these unconventional two-way interactions, along with their structural basis.
Resumo:
Ce travail de thèse a été réalisé au sein de l'Unité de Thérapie Génique et Biologie des Cellules Souches de l'Hôpital Jules- Gonin dans le Service d'Ophtalmologie de l'Université de Lausanne. Ce laboratoire recherche des solutions thérapeutiques pour des maladies dégénératives et incurables de la rétine comme les rétinites pigmentaires (RP). Ayant déjà montré certains résultats dans le domaine, la thérapie génique a été notre outil pour ce travail. Cette méthode se base sur le principe de remplacer un gène déficient par sa copie normale, en transportant celle-ci au coeur même du noyau par un vecteur. Il existe à l'heure actuelle différents vecteurs. Un des plus efficaces est un vecteur viral non-réplicatif : le lentivirus, dérivé de HIV-1. Celui-ci a la capacité d'intégrer le génome de la cellule cible, lui conférant ainsi un nouveau matériel génétique. Notre but a été d'établir le tropisme du lentivirus dans une rétine en dégénérescence. Ce lentivirus est connu pour transduire efficacement les cellules de l'épithélium pigmentaire rétinien dans l'oeil adulte sain, ainsi que celles de la neurorétine, mais ce, uniquement durant le développement. On sait aussi que le vecteur lentiviral présente un tropisme différent selon les enveloppes dont il est muni ; par exemple, le lentivirus avec une enveloppe Mokola est connu pour transduire les cellules gliales du système nerveux central. La rétine qui dégénère montre quant à elle des changements de sa structure qui pourraient influencer la diffusion du vecteur et/ou son tropisme. Le postulat de base a été le suivant : chez l'adulte, la transduction des neurones de la rétine via le lentivirus pourrait être facilitée par l'altération de la membrane limitante externe induite par la dégénérescence (meilleure pénétrance du virus). D'un point de vue technique, nous avons utilisé deux types distincts de modèles murins de dégénérescence rétinienne : des souris Balb/C soumises à une dose toxique de lumière et les souris Rhodopsin knockout, animaux génétiquement modifiés. Comme vecteur viral, nous avons employé deux différents pseudotypes de lentivirus (caractérisés par les enveloppes virales) avec différents promoteurs (séquence d'ADN qui initie la transduction et confère la spécificité d'expression d'un gène). En changeant l'enveloppe et le promoteur, nous avons essayé de trouver la meilleure combinaison pour augmenter l'affinité du vecteur vis-à-vis des photorécepteurs d'abord, puis vis-à-vis d'autres cellules de la rétine. Nos résultats ont montré que la membrane limitante externe est effectivement altérée chez les deux modèles de dégénérescence, mais que cette modification ne favorise pas la transduction des photorécepteurs lorsqu'on utilise un vecteur lentiviral contenant une enveloppe VSVG et un promoteur photorécepteur-spécifique ou ubiquitaire. En effet, une forte réaction gliale a été observée. Par contre, en utilisant le lentivirus avec une enveloppe Mokola et un promoteur ubiquitaire, nous avons constaté une très bonne transduction au niveau des cellules de Millier dans la rétine en dégénérescence, phénomène non observé chez les souris sauvages. Ce travail a donc permis de trouver un vecteur viral efficace pour atteindre et transduire les cellules de Miiller, ceci seulement pendant la dégénérescence de la rétine. Ces cellules, une fois transduites, pourraient être utilisées pour sécréter dans la rétine des agents thérapeutiques tels que des facteurs neurotrophiques pour soutenir la survie des photorécepteurs ou des facteurs anti-angiogéniques pour prévenir la néo-vascularisation lors de diabète ou de dégénérescence maculaire liée à l'âge. - In normal mice, the lentiviral vector (LV) is very efficient to target the RPE cells, but transduces retinal neurons well only during development. In the present study, the tropism of LV has been investigated in the degenerating retina of mice, knowing that the retina structure changes during degeneration. We postulated that the viral transduction would be increased by the alteration of the iuter limiting membrane (OLM). Two different LV pseudotypes were tested using the VSVG arid the Mokola envelopes, as well as two animal models of retinal degeneration: light-damaged Balb-C and Rhodopsin knockout (Rho-/-) mice. After light damage, the OLM is altered and no significant increase of the number of transduced photoreceptors can be obtained with a LV-VSVG-Rhop-GFP vector. In the Rho-/- mice, an altération of the OLM was also observed, but the possibility of transducing photoreceptors was decreased, probably by ongoing gliosis. The use of a ubiquitous promoter allows better photoreceptor transduction, suggesting that photoreceptór-specific promoter activity change during late stages of photoreceptor degeneration. However, the number of targeted photoreceptors remains low. In contrast, LV pseudotyped with the tfokola envelope allows a wide dispersion of the ctor into the retina (corresponding to the injection bleb) with preferential targeting of Muller cells, a situation Mc\ does ot occur in the wild- type retina. Mokola-pseudotyped lentiviral vectors may serve to engineer these glial cells to deliver secreted therapeutic factors to a diseased area of the retina.
Resumo:
Myelination requires a massive increase in glial cell membrane synthesis. Here we demonstrate that the acute phase of myelin lipid synthesis is regulated by SREBP cleavage activation protein (SCAP), an activator of sterol regulatory element-binding proteins (SREBPs). Deletion of SCAP in Schwann cells led to a loss of SREBP-mediated gene expression, congenital hypomyelination and abnormal gait. Interestingly, aging SCAP mutant mice showed partial regain of function; they exhibited improved gait and produced small amounts of myelin indicating a slow SCAP-independent uptake of external lipids. Accordingly, extracellular lipoproteins promoted myelination by SCAP mutant Schwann cells. However, SCAP mutant myelin never reached normal thickness and had biophysical abnormalities concordant with abnormal lipid composition. These data demonstrate that SCAP mediated regulation of glial lipogenesis is key to the proper synthesis of myelin membrane. The described defects in SCAP mutant myelination provide new insights into the pathogenesis, and open new avenues for treatment strategies, of peripheral neuropathies associated with lipid metabolic disorders.
Resumo:
Three phosphatidylinositol-3-kinase-related protein kinases implement cellular responses to DNA damage. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and ataxia-telangiectasia mutated respond primarily to DNA double-strand breaks (DSBs). Ataxia-telangiectasia and RAD3-related (ATR) signals the accumulation of replication protein A (RPA)-covered single-stranded DNA (ssDNA), which is caused by replication obstacles. Stalled replication intermediates can further degenerate and yield replication-associated DSBs. In this paper, we show that the juxtaposition of a double-stranded DNA end and a short ssDNA gap triggered robust activation of endogenous ATR and Chk1 in human cell-free extracts. This DNA damage signal depended on DNA-PKcs and ATR, which congregated onto gapped linear duplex DNA. DNA-PKcs primed ATR/Chk1 activation through DNA structure-specific phosphorylation of RPA32 and TopBP1. The synergistic activation of DNA-PKcs and ATR suggests that the two kinases combine to mount a prompt and specific response to replication-born DSBs.
Resumo:
Mutants were produced in the A-domain of HbpR, a protein belonging to the XylR family of σ(54)-dependent transcription activators, with the purpose of changing its effector recognition specificity from 2-hydroxybiphenyl (2-HBP, the cognate effector) to 2-chlorobiphenyl (2-CBP). Mutations were introduced in the hbpR gene part for the A-domain via error-prone polymerase chain reaction, and assembled on a gene circuitry plasmid in Escherichia coli, permitting HbpR-dependent induction of the enhanced green fluorescent protein (egfp). Cells with mutant HbpR proteins responsive to 2-CBP were enriched and separated in a flow cytometry-assisted cell-sorting procedure. Some 70 mutants were isolated and the A-domain mutations mapped. One of these had acquired true 2-CBP recognition but reacted hypersensitively to 2-HBP (20-fold more than the wild type), whereas others had reduced sensitivity to 2-HBP but a gain of 2-CBP recognition. Sequencing showed that most mutants carried double or triple mutations in the A-domain gene part, and were not located in previously recognized conserved residues within the XylR family members. Further selection from a new mutant pool prepared of the hypersensitive mutant did not result in increased 2-CBP or reduced 2-HBP recognition. Our data thus demonstrate that a one-step in vitro 'evolutionary' adaptation of the HbpR protein can result in both enhancement and reduction of the native effector recognition.
Resumo:
Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.
Resumo:
BAFF, APRIL and their receptors play important immunological roles, especially in the B cell arm of the immune system. A number of splice isoforms have been described for both ligands and receptors in this subfamily, some of which are conserved between mouse and human, while others are species-specific. Structural and mutational analyses have revealed key determinants of receptor-ligand specificity. BAFF-R has a strong selectivity for BAFF; BCMA has a higher affinity for APRIL than for BAFF, while TACI binds both ligands equally well. The molecular signaling events downstream of BAFF-R, BCMA and TACI are still incompletely characterized. Survival appears to be mediated by upregulation of Bcl-2 family members through NF-kappaB activation, degradation of the pro-apototic Bim protein, and control of subcellular localization of PCKdelta. Very little is known about other signaling events associated with receptor engagement by BAFF and APRIL that lead for example to B cell activation or to CD40L-independent Ig switch.
Resumo:
In Duchenne muscular dystrophy, the absence of dystrophin causes progressive muscle wasting and premature death. Excessive calcium influx is thought to initiate the pathogenic cascade, resulting in muscle cell death. Urocortins (Ucns) have protected muscle in several experimental paradigms. Herein, we demonstrate that daily s.c. injections of either Ucn 1 or Ucn 2 to 3-week-old dystrophic mdx(5Cv) mice for 2 weeks increased skeletal muscle mass and normalized plasma creatine kinase activity. Histological examination showed that Ucns remarkably reduced necrosis in the diaphragm and slow- and fast-twitch muscles. Ucns improved muscle resistance to mechanical stress provoked by repetitive tetanizations. Ucn 2 treatment resulted in faster kinetics of contraction and relaxation and a rightward shift of the force-frequency curve, suggesting improved calcium homeostasis. Ucn 2 decreased calcium influx into freshly isolated dystrophic muscles. Pharmacological manipulation demonstrated that the mechanism involved the corticotropin-releasing factor type 2 receptor, cAMP elevation, and activation of both protein kinase A and the cAMP-binding protein Epac. Moreover, both STIM1, the calcium sensor that initiates the assembly of store-operated channels, and the calcium-independent phospholipase A(2) that activates these channels were reduced in dystrophic muscle by Ucn 2. Altogether, our results demonstrate the high potency of Ucns for improving dystrophic muscle structure and function, suggesting that these peptides may be considered for treatment of Duchenne muscular dystrophy.