986 resultados para casein kinase II


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both tumor necrosis factor-alpha (TNF-alpha)/interferon-gamma (IFN-gamma) and angiotensin II (ANG II) induced an increase in total protein degradation in murine myotubes, which was completely attenuated by treatment with beta-hydroxy-beta-methylbutyrate (HMB; 50 microM). There was an increase in formation of reactive oxygen species (ROS) within 30 min, as well as an increase in the activity of both caspase-3 and -8, and both effects were attenuated by HMB. Moreover, inhibitors of caspase-3 and -8 completely attenuated both ROS formation and total protein degradation induced by TNF-alpha/IFN-gamma and ANG II. There was an increased autophosphorylation of double-stranded RNA-dependent protein kinase (PKR), which was attenuated by the specific caspase-3 and -8 inhibitors. Neither ROS formation or protein degradation occurred in myotubes expressing a catalytically inactive PKR variant, PKRDelta6, in response to TNF-alpha/IFN-gamma, compared with myotubes expressing wild-type PKR, although there was still activation of caspase-3 and -8. HMB also attenuated activation of PKR, suggesting that it was important in protein degradation. Formation of ROS was attenuated by rotenone, an inhibitor of the mitochondrial electron transport chain, nitro-l-arginine methyl ester, an inhibitor of nitric oxide synthase, and SB 203580, a specific inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), which also attenuated total protein degradation. Activation of p38 MAPK by PKR provides the link to ROS formation. These results suggest that TNF-alpha/IFN-gamma and ANG II induce muscle protein degradation by a common signaling pathway, which is attenuated by HMB, and that this involves the initial activation of caspase-3 and -8, followed by autophosphorylation and activation of PKR, which then leads to increased ROS formation via activation of p38 MAPK. Increased ROS formation is known to induce protein degradation through the ubiquitin-proteasome pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of Ca2+ in the activation of PKR (double-stranded-RNA-dependent protein kinase), which leads to skeletal muscle atrophy, has been investigated in murine myotubes using the cell-permeable Ca2+ chelator BAPTA/AM (1,2-bis (o-aminphenoxy) ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester). BAPTA/AM effectively attenuated both the increase in total protein degradation, through the ubiquitin–proteasome pathway, and the depression of protein synthesis, induced by both proteolysis-inducing factor (PIF) and angiotensin II (Ang  II). Since both protein synthesis and degradation were attenuated this suggests the involvement of PKR. Indeed BAPTA/AM attenuated both the activation  (autophosphorylation) of PKR and the subsequent phosphorylation of eIF2a (eukaryotic initiation factor 2a) in the presence of PIF, suggesting the involvement of Ca2+ in this process. PIF also induced an increase in the activity of both caspases-3 and -8, which was attenuated by BAPTA/AM. The increase in caspase-3 and -8 activity was shown to be responsible for the activation of PKR, since the latter was completely attenuated by the specific caspase-3 and -8 inhibitors. These results suggest that Ca2+ is involved in the increase in protein degradation and decrease in protein synthesis by PIF and Ang II through activation of PKR by caspases-3 and -8.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin-like growth factor-I (IGF-I) has been shown to attenuate protein degradation in murine myotubes induced by angiotensin II through downregulation of the ubiquitin-proteasome pathway, although the mechanism is not known. Angiotensin II is known to upregulate this pathway through a cellular signalling mechanism involving release of arachidonic acid, activation of protein kinase Cα (PKCα), degradation of inhibitor-κB (I-κB) and nuclear migration of nuclear factor-κB (NF-κB), and all of these events were attenuated by IGF-I (13.2 nM). Induction of the ubiquitin-proteasome pathway has been linked to activation of the RNA-activated protein kinase (PKR), since an inhibitor of PKR attenuated proteasome expression and activity in response to angiotensin II and prevented the decrease in the myofibrillar protein myosin. Angiotensin II induced phosphorylation of PKR and of the eukaryotic initiation factor-2 (eIF2) on the α-subunit, and this was attenuated by IGF-I, by induction of the expression of protein phosphatase 1, which dephosphorylates PKR. Release of arachidonic acid and activation of PKCα by angiotensin II were attenuated by an inhibitor of PKR and IGF-I, and the effect was reversed by Salubrinal (15 μM), an inhibitor of eIF2α dephosphorylation, as was activation of PKCα. In addition myotubes transfected with a dominant-negative PKR (PKRΔ6) showed no release of arachidonate in response to Ang II, and no activation of PKCα. These results suggest that phosphorylation of PKR by angiotensin II was responsible for the activation of the PLA2/PKC pathway leading to activation of NF-κB and that IGF-I attenuates protein degradation due to an inhibitory effect on activation of PKR. © 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antioxidants butylated hydroxytoluene (BHT, 1 mM) and d-α-tocopherol (10 μM) completely attenuated protein degradation in murine myotubes in response to both proteolysis-inducing factor (PIF) and angiotensin II (Ang II), suggesting that the formation of reactive oxygen species (ROS) plays an important role in this process. Both PIF and Ang II induced a rapid and transient increase in ROS formation in myotubes, which followed a parabolic dose-response curve, similar to that for total protein degradation. Antioxidant treatment attenuated the increase in expression and activity of the ubiquitin-proteasome proteolytic pathway by PIF and Ang II, by preventing the activation of the transcription factor nuclear factor-κB (NF-κB), through inhibition of phosphorylation of the NF-κB inhibitor protein (I-κB) and its subsequent degradation. ROS formation by both PIF and Ang II was attenuated by diphenyleneiodonium (10 μM), suggesting that it was mediated through the NADPH oxidase system. ROS formation was also attenuated by trifluoroacetyl arachidonic acid (10 μM), a specific inhibitor of cytosolic phospholipase A2, U-73122 (5 μM) and D609 (200 μM), inhibitors of phospholipase C and calphostin C (300 nM), a highly specific inhibitor of protein kinase C (PKC), all known activators of NADPH oxidase. Myotubes containing a dominant-negative mutant of PKC did not show an increase in ROS formation in response to either PIF or Ang II. The two Rac1 inhibitors W56 (200 μM) and NSC23766 (10 μM) also attenuated both ROS formation and protein degradation induced by both PIF and Ang II. Rac1 is known to mediate signalling between the phosphatidylinositol-3 kinase (PI-3K) product and NADPH oxidase, and treatment with LY24002 (10 μM), a highly selective inhibitor of PI-3K, completely attenuated ROS production in response to both PIF and Ang II, and inhibited total protein degradation, while the inactive analogue LY303511 (100 μM) had no effect. ROS formation appears to be important in muscle atrophy in cancer cachexia, since treatment of weight losing mice bearing the MAC16 tumour with d-α-tocopherol (1 mg kg- 1) attenuated protein degradation and increased protein synthesis in skeletal muscle. © 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiotensin I and II have been shown to directly induce protein degradation in skeletal muscle through an increased activity and expression of the ubiquitin-proteasome proteolytic pathway. This investigation determines the role of the nuclear transcription factor nuclear factor-κB (NF-κB) in this process. Using murine myotubes as a surrogate model system both angiotensin I and II were found to induce activation of protein kinase C (PKC), with a parabolic dose-response curve similar to the induction of total protein degradation. Activation of PKC was required for the induction of proteasome expression, since calphostin C, a highly specific inhibitor of PKC, attenuated both the increase in total protein degradation and in proteasome expression and functional activity increased by angiotensin II. PKC is known to activate I-κB kinase (IKK), which is responsible for the phosphorylation and subsequent degradation of I-κB. Both angiotensin I and II induced an early decrease in cytoplasmic I-κB levels followed by nuclear accumulation of NF-κB. Using an NF-κB luciferase construct this was shown to increase transcriptional activation of NF-κB regulated genes. Maximal luciferase expression was seen at the same concentrations of angiotensin I/II as those inducing protein degradation. Total protein degradation induced by both angiotensin I and II was attenuated by resveratrol, which prevented nuclear accumulation of NF-κB, confirming that activation of NF-κB was responsible for the increased protein degradation. These results suggest that induction of proteasome expression by angiotensin I/II involves a signalling pathway involving PKC and NF-κB. © 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preeclampsia is a pregnancy-specific hypertensive syndrome that causes substantial maternal and fetal morbidity and mortality. Recent evidence indicates that maternal endothelial dysfunction in preeclampsia results from increased soluble Fms-like tyrosine kinase-1 (sFlt-1), a circulating antiangiogenic protein. Factors responsible for excessive production of sFlt-1 in preeclampsia have not been identified. We tested the hypothesis that angiotensin II type 1 (AT1) receptor activating autoantibodies, which occur in women with preeclampsia, contribute to increased production of sFlt-1. IgG from women with preeclampsia stimulates the synthesis and secretion of sFlt-1 via AT1 receptor activation in pregnant mice, human placental villous explants, and human trophoblast cells. Using FK506 or short-interfering RNA targeted to the calcineurin catalytic subunit mRNA, we determined that calcineurin/nuclear factor of activated T-cells signaling functions downstream of the AT1 receptor to induce sFlt-1 synthesis and secretion by AT1-receptor activating autoantibodies. AT1-receptor activating autoantibody–induced sFlt-1 secretion resulted in inhibition of endothelial cell migration and capillary tube formation in vitro. Overall, our studies demonstrate that an autoantibody from women with preeclampsia induces sFlt-1 production via angiotensin receptor activation and downstream calcineurin/nuclear factor of activated T-cells signaling. These autoantibodies represent potentially important targets for diagnosis and therapeutic intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’insuffisance cardiaque (IC) est associée à un taux de mortalité et d’hospitalisations élevé causant un fardeau économique important. Les deux causes majeures de décès de l’IC sont les arythmies ventriculaires létales et les sidérations myocardiques. Il est maintenant reconnu que l’angiotensine II (ANGII) est l'un des principaux médiateurs de l’IC. Ses effets délétères découlent de l’activation du récepteur de type 1 de l’ANGII (AT1) et entraînent le développement d’hypertrophie. Toutefois, son rôle dans la genèse d’arythmies demeure incompris. De ce fait, l'étude des mécanismes électriques et contractiles sous-jacents aux effets pathologiques de l’ANGII s’avère essentielle afin de mieux comprendre et soigner cette pathologie. Il est souvent perçu que les femmes sont protégées envers les maladies cardiovasculaires. Cependant, le nombre total de femmes décédant d’IC est plus grand que le nombre d’hommes. Également, l’impact des facteurs de risque diffère entre chaque sexe. Ces différences existent, mais les mécanismes sous-jacents sont encore peu connus. De plus, les femmes reçoivent fréquemment un diagnostic ou un traitement inapproprié en raison d’un manque d’information sur les différences entre les sexes dans la manifestation d’une pathologie. Ce manque de données peut découler du fait que les sujets de sexe féminin sont souvent sous-représentés dans les essais cliniques ou la recherche fondamentale ce qui a grandement limité l’avancement de nos connaissances sur ~50 % de la population. Ainsi, il semble plus que nécessaire d’approfondir notre compréhension des différences entre les sexes, notamment dans la progression de l’IC. L’utilisation d’un modèle de souris transgénique surexprimant le récepteur AT1 (souris AT1R) a permis d’étudier les changements électriques, structurels et contractiles avant et après le développement d’hypertrophie. Premièrement, chez les souris AT1R mâles, un ralentissement de la conduction ventriculaire a été observé indépendamment de l’hypertrophie. Ce résultat était expliqué par une réduction de la densité du courant Na+, mais pas de l’expression du canal. Ensuite, le rôle des protéines kinases C (PKC) dans la régulation du canal Na+ par l’ANGII a été exploré. Les évidences ont suggéré que la PKCα était responsable de la modulation de la diminution du courant Na+ chez les souris AT1R mâles et dans les cardiomyocytes humains dérivés de cellules souches induites pluripotentes (hiPSC-CM) en réponse à un traitement chronique à l’ANGII. Ensuite, les différences entre les sexes ont été comparées chez la souris AT1R. Une plus grande mortalité a été constatée chez les femelles AT1R suggérant qu’elles sont plus sensibles à la surexpression de AT1R. Le remodelage électrique ventriculaire a donc été comparé entre les souris AT1R des deux sexes. Les courants ioniques étaient altérés de façon similaire entre les sexes excluant ainsi leur implication dans la mortalité plus élevée chez les femelles. Ensuite, l’homéostasie calcique et la fonction cardiaque ont été étudiées. Il a été démontré que les femelles développaient une hypertrophie et une dilatation ventriculaire plus sévère que les mâles. De plus, les femelles AT1R avaient de petits transitoires calciques, une extrusion du Ca2+ plus lente ainsi qu’une augmentation de la fréquence des étincelles Ca2+ pouvant participer à des troubles contractiles et à la venue de post-dépolarisations précoces. En conclusion, l’ANGII est impliquée dans le remodelage électrique, structurel et calcique associé à l'émergence de l’IC. De surcroît, ces altérations affectent plus sévèrement les femelles soulignant la présence de différences entre les sexes dans le développement de l’IC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium (Ca2+) is a known important second messenger. Calcium/Calmodulin (CaM) dependent protein kinase kinase 2 (CaMKK2) is a crucial kinase in the calcium signaling cascade. Activated by Ca2+/CaM, CaMKK2 can phosphorylate other CaM kinases and AMP-activated protein kinase (AMPK) to regulate cell differentiation, energy balance, metabolism and inflammation. Outside of the brain, CaMKK2 can only be detected in hematopoietic stem cells and progenitors, and in the subsets of mature myeloid cells. CaMKK2 has been noted to facilitate tumor cell proliferation in prostate cancer, breast cancer, and hepatic cancer. However, whethter CaMKK2 impacts the tumor microenvironment especially in hematopoietic malignancies remains unknown. Due to the relevance of myeloid cells in tumor growth, we hypothesized that CaMKK2 has a critical role in the tumor microenvironment, and tested this hyopothesis in murine models of hematological and solid cancer malignancies.

We found that CaMKK2 ablation in the host suppressed the growth of E.G7 murine lymphoma, Vk*Myc myeloma and E0771 mammary cancer. The selective ablation of CaMKK2 in myeloid cells was sufficient to restrain tumor growth, of which could be reversed by CD8 cell depletion. In the lymphoma microenvironment, ablating CaMKK2 generated less myeloid-derived suppressor cells (MDSCs) in vitro and in vivo. Mechanistically, CaMKK2 deficient dendritic cells showed higher Major Histocompatibility Class II (MHC II) and costimulatory factor expression, higher chemokine and IL-12 secretion when stimulated by LPS, and have higher potent in stimulating T-cell activation. AMPK, an anti-inflammatory kinase, was found as the relevant downstream target of CaMKK2 in dendritic cells. Treatment with CaMKK2 selective inhibitor STO-609 efficiently suppressed E.G7 and E0771 tumor growth, and reshaped the tumor microenvironment by attracting more immunogenic myeloid cells and infiltrated T cells.

In conclusion, we demonstrate that CaMKK2 expressed in myeloid cells is an important checkpoint in tumor microenvironment. Ablating CaMKK2 suppresses lymphoma growth by promoting myeloid cells development thereby decreasing MDSCs while enhancing the anti-tumor immune response. CaMKK2 inhibition is an innovative strategy for cancer therapy through reprogramming the tumor microenvironment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: K-ras mutation is found in up to 40% of LARC. Sor is a multitarget tyrosine kinase inhibitor including raf and VEGFR and has demonstrated radiosensitizing effects. Sor might improve outcome of standard preoperative radio-chemotherapy in patients with k-ras mutated LARC. Methods: Pts with k-ras mutated T3-4 and/or N+, M0 disease by MRI were included. Recommended doses from phase I part consisted of RT 1.8 Gy/day x25 with Cape 825mg/m2bid x 33 in combination with Sor 400mg/d. The primary endpoint for the phase II part was pathological complete response (pCR) prospectively defined as grade 3 (near complete regression) or 4 (complete regression) in the histological grading system according to Dworak (DC). A pCR rate of 8% or lower was considered uninteresting and of 22% or higher was promising. Secondary endpoints included sphincter preservation, R0 resection, downstaging and safety. Results: 54 pts were treated in 18 centers in Switzerland und Hungary, 40 pts were included into the single arm phase II part. Median dose intensity per day was 100.0% for RT, 98.6% for Cape and 100.0% for Sor respectively. pCR rate was 60.0% (95%CI: 43.3%, 75.1%) by central independent pathological review (15.0% DC grade 4; 45.0% DC grade 3). Sphincter preservation was achieved in 89.5%, R0 resection in 94.7% and downstaging in 81.6% of the pts. The most common grade 3 toxicities included diarrhea (15.0%), skin toxicity outside of the RT field (12.5%), pain (7.5%), skin toxicity in RT field, proctitis, fatigue and cardiac ischemia (each 5.0%). Laboratory AEs grade 3/4 were neutropenia (1 pt grade 4; 1 grade 3), creatinine elevation (1 pt grade 3). Conclusions: The combination of Sor to standard RCT with Cape in k-ras mutated LARC tumors is highly active with acceptable toxicity and deserves further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiotensin II (Ang II) and platelet-derived growth factor-BB (PDGF-BB) are associated with excessive cell migration, proliferation and many growth-related diseases. However, whether these agents utilise similar mechanisms to trigger vascular pathologies remains to be explored. The effects of Ang II and PDGF-BB on coronary artery smooth muscle cell (CASMC) migration and proliferation were investigated via Dunn chemotaxis assay and the measurement of [3H]thymidine incorporation rates, respectively. Both atherogens produced similar degrees of cell migration which were dramatically inhibited by mevastatin (10 nM). However, the inhibitory effects of losartan (10 nM) and MnTBAP (a free radical scavenger; 50 μM) were found to be unique to Ang II-mediated chemotaxis. In contrast, MnTBAP, apocynin (an antioxidant and phagocytic NADPH oxidase inhibitor; 500 μM), mevastatin and pravastatin (100 nM) equally suppressed both Ang II and PDGF-BB-induced cellular growth. Although atherogens produced similar changes in NADPH oxidase, NOS and superoxide dismutase activities, they differentially regulated antioxidant glutathione peroxidase activity which was diminished by Ang II and unaffected by PDGF-BB. Studies with signal transduction pathway inhibitors revealed the involvement of multiple pathways i.e. protein kinase C, tyrosine kinase and MAPK in Ang II- and/or PDGF-BB-induced aforementioned enzyme activity changes. In conclusion, Ang II and PDGF-BB may induce coronary atherosclerotic disease formation by stimulating CASMC migration and proliferation through agent-specific regulation of oxidative status and utilisation of different signal transduction pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiovascular diseases (CVDs) including, hypertension, coronary heart disease and heart failure are the leading cause of death worldwide. Hypertension, a chronic increase in blood pressure above 140/90 mmHg, is the single main contributor to deaths due to heart disease and stroke. In the heart, hypertension results in adaptive cardiac remodelling, including LV hypertrophy to normalize wall stress and maintain cardiac contractile function. However, chronic increases in BP results in the development of hypertensive heart disease (HHD). HHD describes the maladaptive changes during cardiac remodelling which result in reduced systolic and diastolic function and eventually heart failure. This includes ventricular dilation due to eccentric hypertrophy, cardiac fibrosis which stiffens the ventricular wall and microvascular rarefaction resulting in a decrease in coronary blood flow albeit an increase in energy demand. Chronic activation of the renin-angiotensin-system (RAS) with its effector peptide angiotensin (Ang)II plays a key role in the development of hypertension and the maladaptive changes in HHD. Ang II acts via the angiotensin type 1 receptor (AT1R) to mediate most of its pathological actions during HHD, including stimulation of cardiomyocyte hypertrophy, activation of cardiac fibroblasts and increased collagen deposition. The counter-regulatory axis of the RAS which is centred on the ACE2/Ang-(1-7)/Mas axis has been demonstrated to counteract the pathological actions of Ang II in the heart and vasculature. Ang-(1-7) via the Mas receptor prevents Ang II-induced cardiac hypertrophy and fibrosis and improves cardiac contractile function in animal models of HHD. In contrast, less is known about Ang-(1-9) although evidence has demonstrated that Ang-(1-9) also antagonises Ang II and is anti-hypertrophic and anti-fibrotic in animal models of acute cardiac remodelling. However, so far it is not well documented whether Ang-(1-9) can reverse established cardiac dysfunction and remodelling and whether it is beneficial when administered chronically. Therefore, the main aim of this thesis was to assess the effects of chronic Ang-(1-9) administration on cardiac structure and function in a model of Ang II-induced cardiac remodelling. Furthermore, this thesis aimed to investigate novel pathways contributing to the pathological remodelling in response to Ang II. First, a mouse model of chronic Ang II infusion was established and characterised by comparing the structural and functional effects of the infusion of a low and high dose of Ang II after 6 weeks. Echocardiographic measurements demonstrated that low dose Ang II infusion resulted in a gradual decline in cardiac function while a high dose of Ang II induced acute cardiac contractile dysfunction. Both doses equally induced the development of cardiac hypertrophy and cardiac fibrosis characterised by an increase in the deposition of collagen I and collagen III. Moreover, increases in gene expression of fibrotic and hypertrophic markers could be detected following high dose Ang II infusion over 6 weeks. Following this characterisation, the high dose infusion model was used to assess the effects of Ang-(1-9) on cardiac structural and functional remodelling in established disease. Initially, it was evaluated whether Ang-(1-9) can reverse Ang II-induced cardiac disease by administering Ang-(1-9) for 2-4 weeks following an initial 2 week infusion of a high dose of Ang II to induce cardiac contractile dysfunction. The infusion of Ang-(1-9) for 2 weeks was associated with a significant improvement of LV fractional shortening compared to Ang II infusion. However, after 4 weeks fractional shortening declined to Ang II levels. Despite the transient improvement in cardiac contractile function, Ang-(1-9) did not modulate blood pressure, LV hypertrophy or cardiac fibrosis. To further investigate the direct cardiac effects of Ang-(1-9), cardiac contractile performance in response to Ang-(1-9) was evaluated in the isolated Langendorff-perfused rat heart. Perfusion of Ang-(1-9) in the paced and spontaneously beating rat heart mediated a positive inotropic effect characterised by an increase in LV developed pressure, cardiac contractility and relaxation. This was in contrast to Ang II and Ang-(1-7). Furthermore, the positive inotropic effect to Ang-(1-9) was blocked by the AT1R antagonist losartan and the protein kinase A inhibitor H89. Next, endothelial-to-mesenchymal transition (EndMT) as a novel pathway that may contribute to Ang II-induced cardiac remodelling was assessed in Ang II-infused mice in vivo and in human coronary artery endothelial cells (HCAEC) in vitro. Infusion of Ang II to mice for 2-6 weeks resulted in a significant decrease in myocardial capillary density and this was associated with the occurrence of dual labelling of endothelial cells for endothelial and mesenchymal markers. In vitro stimulation of HCAEC with TGFβ and Ang II revealed that Ang II exacerbated TGF-induced gene expression of mesenchymal markers. This was not correlated with any changes in SMAD2 or ERK1/2 phosphorylation with co-stimulation of TGFβ and Ang II. However, superoxide production was significantly increased in HCAEC stimulated with Ang II but not TGFβ. Finally, the role of Ang II in microvesicle (MV)-mediated cardiomyocyte hypertrophy was investigated. MVs purified from neonatal rat cardiac fibroblasts were found to contain detectable Ang II and this was increased by stimulation of fibroblasts with Ang II. Treatment of cardiomyocytes with MVs derived from Ang II-stimulated fibroblasts induced cardiomyocyte hypertrophy which could be blocked by the AT1R antagonist losartan and an inhibitor of MV synthesis and release brefeldin A. Furthermore, Ang II was found to be present in MVs isolated from serum and plasma of Ang II-infused mice and SHRSP and WKY rats. Overall, the findings of this thesis demonstrate for the first time that the actions of Ang-(1-9) in cardiac pathology are dependent on its time of administration and that Ang-(1-9) can reverse Ang II-induced cardiac contractile dysfunction by acting as a positive inotrope. Furthermore, this thesis demonstrates evidence for an involvement of EndMT and MV signalling as novel pathways contributing to Ang II-induced cardiac fibrosis and hypertrophy, respectively. These findings provide incentive to further investigate the therapeutic potential of Ang-(1-9) in the treatment of cardiac contractile dysfunction in heart disease, establish the importance of novel pathways in Ang II-mediated cardiac remodelling and evaluate the significance of the presence of Ang II in plasma-derived MVs.