975 resultados para bmp 2 gene


Relevância:

80.00% 80.00%

Publicador:

Resumo:

An RNA transcribed from the antisense strand of the FGF-2 gene has been implicated in the regulation of FGF-2 mRNA stability in amphibian oocytes. We have now cloned and characterized a novel 1.1-kb mRNA (fgf-as) from neonatal rat liver. In non-central nervous system (CNS) tissues the fgf-as RNA is abundantly expressed in a developmentally regulated manner. The FGF-AS cDNA contains a consensus polyadenylylation signal and a long open reading frame (ORF) whose deduced amino acid sequence predicts a 35-kDa protein with homology to the MutT family of nucleotide hydrolases. Western blot analysis with antibodies against the deduced peptide sequence demonstrates that the FGF-AS protein is expressed in a broad range of non-CNS tissue in the postnatal period. In the developing brain, the abundance of sense and antisense transcripts are inversely related, suggesting a role for the antisense RNA in posttranscriptional regulation of FGF-2 expression in this tissue.The FGF-AS is complementary to two widely separated regions in the long 3′ untranslated region of the FGF-2 mRNA, in the vicinity of the proximal and distal polyadenylylation sites. These findings demonstrate that the FGF-2 and fgf-as RNAs are coordinately transcribed on a tissue-specific and developmentally regulated basis and suggest that interaction of the sense and antisense RNAs may result in posttranscriptional regulation of FGF-2 in some tissues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cholesterol feeding reduces the mRNAs encoding multiple enzymes in the cholesterol biosynthetic pathway and the low density lipoprotein receptor in livers of hamsters. Here we show that cholesterol feeding also reduces the levels of the nuclear NH2-terminal domains of sterol regulatory element binding proteins (SREBPs), which activate transcription of sterol-regulated genes. We show that livers of hamsters, like those of mice and humans, predominantly produce SREBP-2 and the 1c isoform of SREBP-1. Both are produced as membrane-bound precursors that must be proteolyzed to release the transcriptionally active NH2-terminal domains. Diets containing 0.1% to 1.0% cholesterol decreased the amount of nuclear SREBP-1c without affecting the amount of the membrane precursor or its mRNA, suggesting that cholesterol inhibits the proteolytic processing of SREBP-1 in liver as it does in cultured cells. Cholesterol also appeared to reduce the proteolytic processing of SREBP-2. In addition, at high levels of dietary cholesterol the mRNA encoding SREBP-2 declined and the amount of the precursor also fell, suggesting that cholesterol accumulation also may inhibit transcription of the SREBP-2 gene. The high-cholesterol diets reduced the amount of low density lipoprotein receptor mRNA by 30% and produced a more profound 70–90% reduction in mRNAs encoding 3-hydroxy-3-methylglutaryl CoA synthase and reductase. Treatment with lovastatin and Colestipol, which increases hepatic demands for cholesterol, increased the amount of SREBP-2 mRNA as well as the precursor and nuclear forms of the protein. This treatment caused a reciprocal decline in SREBP-1c mRNA and protein. Considered together, these data suggest that SREBPs play important roles in controlling transcription of sterol-regulated genes in liver, as they do in cultured cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Gfi-1 protooncogene encodes a nuclear zinc-finger protein that carries a novel repressor domain, SNAG, and functions as a position- and orientation-independent active transcriptional repressor. The Gfi-1 repressor allows interleukin 2 (IL-2)-dependent T cells to escape G1 arrest induced by IL-2 withdrawal in culture and collaborates with c-myc and pim-1 for the induction of retrovirus-induced lymphomas in animals. Here we show that overexpression of Gfi-1 also inhibits cell death induced by cultivation of IL-2-dependent T-cell lines in IL-2-deficient media. Similarly, induction of Gfi-1 in primary thymocytes from mice carrying a metal-inducible Gfi-1 transgene inhibits cell death induced by cultivation in vitro. The protein and mRNA levels of the proapoptotic regulator Bax are down-regulated by Gfi-1 in both immortalized T-cell lines and primary transgenic thymocytes. The repression is direct and depends on several Gfi-1-binding sites in the p53-inducible Bax promoter. In addition to Bax, Gfi-1 also represses Bak, another apoptosis-promoting member of the Bcl-2 gene family. Therefore, Gfi-1 may inhibit apoptosis by means of its repression of multiple proapoptotic regulators. The antiapoptotic properties of Gfi-1 provide a potential explanation for its strong collaboration with c-myc during oncogenesis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gene regulation by imposed localization was studied by using designed zinc finger proteins that bind 18-bp DNA sequences in the 5′ untranslated regions of the protooncogenes erbB-2 and erbB-3. Transcription factors were generated by fusion of the DNA-binding proteins to repression or activation domains. When introduced into cells these transcription factors acted as dominant repressors or activators of, respectively, endogenous erbB-2 or erbB-3 gene expression. Significantly, imposed regulation of the two genes was highly specific, despite the fact that the transcription factor binding sites targeted in erbB-2 and erbB-3 share 15 of 18 nucleotides. Regulation of erbB-2 gene expression was observed in cells derived from several species that conserve the DNA target sequence. Repression of erbB-2 in SKBR3 breast cancer cells inhibited cell-cycle progression by inducing a G1 accumulation, suggesting the potential of designed transcription factors for cancer gene therapy. These results demonstrate the willful up- and down-regulation of endogenous genes, and provide an additional means to alter biological systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The conidiation rhythm in the fungus Neurospora crassa is a model system for investigating the genetics of circadian clocks. Null mutants at the frq (frequency) locus (frq9 and frq10) make no functional frq gene products and are arrhythmic under standard conditions. The white-collar strains (wc-1 and wc-2) are insensitive to most effects of light, and are also arrhythmic. All three genes are proposed to be central components of the circadian oscillator. We have been investigating two mutants, cel (chain-elongation) and chol-1 (choline-requirer), which are defective in lipid synthesis and affect the period and temperature compensation of the rhythm. We have constructed the double mutant strains chol-1 frq9, chol-1 frq10, chol-1 wc-1, chol-1 wc-2, cel frq9, cel frq10, and cel wc-2. We find that these double mutant strains are robustly rhythmic when assayed under lipid-deficient conditions, indicating that free-running rhythmicity does not require the frq, wc-1, or wc-2 gene products. The rhythms in the double mutant strains are similar to the cel and chol-1 parents, except that they are less sensitive to light. This suggests that the frq, wc-1, and wc-2 gene products may be components of a pathway that normally supplies input to a core oscillator to transduce light signals and sustain rhythmicity. This pathway can be bypassed when lipid metabolism is altered.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A transgenic mouse model of metastatic prostate cancer has been developed that is 100% penetrant in multiple pedigrees. Nucleotides −6500 to +34 of the mouse cryptdin-2 gene were used to direct expression of simian virus 40 T antigen to a subset of neuroendocrine cells in all lobes of the FVB/N mouse prostate. Transgene expression is initiated between 7 and 8 weeks of age and leads to development of prostatic intraepithelial neoplasia within a week. Prostatic intraepithelial neoplasia progresses rapidly to local invasion. Metastases to lymph nodes, liver, lung, and bone are common by 6 months. Tumorigenesis is not dependent on androgens. This model indicates that the neuroendocrine cell lineage of the prostate is exquisitely sensitive to transformation and provides insights about the significance of neuroendocrine differentiation in human prostate cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deg-3 gene from the nematode Caenorhabditis elegans encodes an α subunit of a nicotinic acetylcholine receptor that was first identified by a dominant allele, u662, which produced neuronal degeneration. Because deg-3 cDNAs contain the SL2 trans-spliced leader, we suggested that deg-3 was transcribed as part of a C. elegans operon. Here we show that des-2, a gene in which mutations suppress deg-3(u662), is the upstream gene in that operon. The des-2 gene also encodes an α subunit of a nicotinic acetylcholine receptor. As expected for genes whose mRNAs are formed from a single transcript, both genes have similar expression patterns. This coexpression is functionally important because (i) des-2 is needed for the deg-3(u662) degenerations in vivo; (ii) an acetylcholine-gated channel is formed in Xenopus oocytes when both subunits are expressed but not when either is expressed alone; and (iii) channel activity, albeit apparently altered from that of the wild-type channel, results from the expression of a u662-type mutant subunit but, again, only when the wild-type DES-2 subunit is present. Thus, the operon structure appears to regulate the coordinate expression of two channel subunits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Induction of phase 2 enzymes, which neutralize reactive electrophiles and act as indirect antioxidants, appears to be an effective means for achieving protection against a variety of carcinogens in animals and humans. Transcriptional control of the expression of these enzymes is mediated, at least in part, through the antioxidant response element (ARE) found in the regulatory regions of their genes. The transcription factor Nrf2, which binds to the ARE, appears to be essential for the induction of prototypical phase 2 enzymes such as glutathione S-transferases (GSTs) and NAD(P)H:quinone oxidoreductase (NQO1). Constitutive hepatic and gastric activities of GST and NQO1 were reduced by 50–80% in nrf2-deficient mice compared with wild-type mice. Moreover, the 2- to 5-fold induction of these enzymes in wild-type mice by the chemoprotective agent oltipraz, which is currently in clinical trials, was almost completely abrogated in the nrf2-deficient mice. In parallel with the enzymatic changes, nrf2-deficient mice had a significantly higher burden of gastric neoplasia after treatment with benzo[a]pyrene than did wild-type mice. Oltipraz significantly reduced multiplicity of gastric neoplasia in wild-type mice by 55%, but had no effect on tumor burden in nrf2-deficient mice. Thus, Nrf2 plays a central role in the regulation of constitutive and inducible expression of phase 2 enzymes in vivo and dramatically influences susceptibility to carcinogenesis. Moreover, the total loss of anticarcinogenic efficacy of oltipraz in the nrf2-disrupted mice highlights the prime importance of elevated phase 2 gene expression in chemoprotection by this and similar enzyme inducers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Apoplastic α-glucosidases occur widely in plants but their function is unknown because appropriate substrates in the apoplast have not been identified. Arabidopsis contains at least three α-glucosidase genes; Aglu-1 and Aglu-3 are sequenced and Aglu-2 is known from six expressed sequence tags. Antibodies raised to a portion of Aglu-1 expressed in Escherichia coli recognize two proteins of 96 and 81 kD, respectively, in vegetative tissues of Arabidopsis, broccoli (Brassica oleracea L.), and mustard (Brassica napus L.). The acidic α-glucosidase activity from broccoli flower buds was purified using concanavalin A and ion-exchange chromatography. Two active fractions were resolved and both contained a 96-kD immunoreactive polypeptide. The N-terminal sequence from the 96-kD broccoli α-glucosidase indicated that it corresponds to the Arabidopsis Aglu-2 gene and that approximately 15 kD of the predicted N terminus was cleaved. The 81-kD protein was more abundant than the 96-kD protein, but it was not active with 4-methylumbelliferyl-α-d-glucopyranoside as the substrate and it did not bind to concanavalin A. In situ activity staining using 5-bromo-4-chloro-3-indolyl-α-d-glucopyranoside revealed that the acidic α-glucosidase activity is predominantly located in the outer cortex of broccoli stems and in vascular tissue, especially in leaf traces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several mutant strains of Synechocystis sp. PCC 6803 with large deletions in the D-E loop of the photosystem II (PSII) reaction center polypeptide D1 were subjected to high light to investigate the role of this hydrophilic loop in the photoinhibition cascade of PSII. The tolerance of PSII to photoinhibition in the autotrophic mutant ΔR225-F239 (PD), when oxygen evolution was monitored with 2,6-dichloro-p-benzoquinone and the equal susceptibility compared with control when monitored with bicarbonate, suggested an inactivation of the QB-binding niche as the first event in the photoinhibition cascade in vivo. This step in PD was largely reversible at low light without the need for protein synthesis. Only the next event, inactivation of QA reduction, was irreversible and gave a signal for D1 polypeptide degradation. The heterotrophic deletion mutants ΔG240-V249 and ΔR225-V249 had severely modified QB pockets, yet exhibited high rates of 2,6-dichloro-p-benzoquinone-mediated oxygen evolution and less tolerance to photoinhibition than PD. Moreover, the protein-synthesis-dependent recovery of PSII from photoinhibition was impaired in the ΔG240-V249 and ΔR225-V249 mutants because of the effects of the mutations on the expression of the psbA-2 gene. No specific sequences in the D-E loop were found to be essential for high rates of D1 polypeptide degradation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anergy is a major mechanism to ensure antigen-specific tolerance in T lymphocytes in the adult. In vivo, anergy has mainly been studied at the cellular level. In this study, we used the T-cell-activating superantigen staphylococcal enterotoxin A (SEA) to investigate molecular mechanisms of T-lymphocyte anergy in vivo. Injection of SEA to adult mice activates CD4+ T cells expressing certain T-cell receptor (TCR) variable region beta-chain families and induces strong and rapid production of interleukin 2 (IL-2). In contrast, repeated injections of SEA cause CD4+ T-cell deletion and anergy in the remaining CD4+ T cells, characterized by reduced expression of IL-2 at mRNA and protein levels. We analyzed expression of AP-1, NF-kappa B, NF-AT, and octamer binding transcription factors, which are known to be involved in the regulation of IL-2 gene promoter activity. Large amounts of AP-1 and NF-kappa B and significant quantities of NF-AT were induced in SEA-activated CD4+ spleen T cells, whereas Oct-1 and Oct-2 DNA binding activity was similar in both resting and activated T cells. In contrast, anergic CD4+ T cells contained severely reduced levels of AP-1 and Fos/Jun-containing NF-AT complexes but expressed significant amounts of NF-kappa B and Oct binding proteins after SEA stimulation. Resolution of the NF-kappa B complex demonstrated predominant expression of p50-p65 heterodimers in activated CD4+ T cells, while anergic cells mainly expressed the transcriptionally inactive p50 homodimer. These alterations of transcription factors are likely to be responsible for repression of IL-2 in anergic T cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mCAT-2 gene encodes a Na(+)-independent cationic amino acid (AA) transporter that is inducibly expressed in a tissue-specific manner in various physiological conditions. When mCAT-2 protein is expressed in Xenopus oocytes, the elicited AA transport properties are similar to the biochemically defined transport system y+. The mCAT-2 protein sequence is closely related to another cationic AA transporter (mCAT-1); these related proteins elicit virtually identical cationic AA transport in Xenopus oocytes. The two genes differ in their tissue expression and induction patterns. Here we report the presence of diverse 5' untranslated region (UTR) sequences in mCAT-2 transcripts. Sequence analysis of 22 independent mCAT-2 cDNA clones reveals that the cDNA sequences converge precisely 16 bp 5' of the initiator AUG codon. Moreover, analysis of genomic clones shows that the mCAT-2 gene 5'UTR exons are dispersed over 18 kb. Classical promoter and enhancer elements are present in appropriate positions 5' of the exons and their utilization results in regulated mCAT-2 mRNA accumulation in skeletal muscle and liver following partial hepatectomy. The isoform adjacent to the most distal promoter is found in all tissues and cell types previously shown to express mCAT-2, while the other 5' UTR isoforms are more tissue specific in their expression. Utilization of some or all of five putative promoters was documented in lymphoma cell clones, liver, and skeletal muscle. TATA-containing and (G+C)-rich TATA-less promoters appear to control mCAT-2 gene expression. The data indicate that the several distinct 5' mCAT-2 mRNA isoforms result from transcriptional initiation at distinct promoters and permit flexible transcriptional regulation of this cationic AA transporter gene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The p53 tumor-suppressor protein binds DNA and activates the expression of a 21-kDa protein that inhibits both the activity of cyclin-dependent kinases and the function of proliferating cell nuclear antigen. Since p21 expression has been reported to increase 10- to 20-fold as human diploid fibroblasts lose the ability to replicate, we examined the expression and activity of p53 during replicative aging. Similar levels of total p53 mRNA and protein were expressed in low-passage (young) and high-passage (old) cells but both DNA binding activity in vitro and transcriptional activity of p53 in vivo were increased severalfold in high-passage cells. While the basis of increased p53 activity is presently unclear, it is not correlated with differential phosphorylation or changes in p53-mouse double minute 2 gene product interactions. These results provide evidence for the activation of a protein involved in the control of cell cycle checkpoints during cellular aging, in the absence of increased expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cytochrome P450 1A2 (CYP1A2) is a constitutively expressed hepatic enzyme that is highly conserved among mammals. This protein is primarily involved in oxidative metabolism of xenobiotics and is capable of metabolically activating numerous procarcinogens including aflatoxin B1, arylamines, heterocyclic amine food mutagens, and polycylic aromatic hydrocarbons. Expression of CYP1A2 is induced after exposure to certain aromatic hydrocarbons (i.e., 2,3,7,8-tetrachlorodibenzo-p-dioxin). Direct evidence for a role of CYP1A2 in any physiological or developmental pathway has not been documented. We now demonstrate that mice homozygous for a targeted mutation in the Cyp1a-2 gene are nonviable. Lethality occurs shortly after birth with symptoms of severe respiratory distress. Mutant neonates display impaired respiratory function associated with histological signs of lung immaturity, lack of air in alveoli at birth, and changes in expression of surfactant apoprotein in alveolar type II cells. The penetrance of the phenotype is not complete (19 mutants survived to adulthood out of 599 mice). Surviving animals, although lacking expression of CYP1A2, appear to be normal and are able to reproduce. These findings establish that CYP1A2 is critical for neonatal survival by influencing the physiology of respiration in neonates, thus offering etiological insights for neonatal respiratory distress syndrome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neuroblastoma (NB), a tumor arising from the sympathetic nervous system, is one of the most common malignancies in childhood. Several recent reports on the p53 genotype found virtually exclusive wild-type status in primary tumors, and it was postulated that p53 plays no role in the development of NB. Here, however, we report that the vast majority of undifferentiated NBs exhibit abnormal cytoplasmic sequestration of wild-type p53. This inability of p53 to translocate to the nucleus presumably prevents the protein from functioning as a suppressor. Thirty of 31 cases (96%) of undifferentiated NB showed elevated levels of wild-type p53 in the cytoplasm of all tumor cells concomittant with a lack of nuclear staining. p53 immunoprecipitation from tumor tissues showed a 4.5- to 8-fold increase over normal protein levels. All of 10 tumors analyzed harbored wild-type p53 by direct sequencing of full-length cDNA and Southern blot. In addition, no MDM-2 gene amplification was seen in all 11 tumors analyzed. In contrast, no p53 abnormality was detected in 14 differentiated ganglioneuroblastomas and 1 benign ganglioneuroma. We conclude that loss of p53 function seems to play a major role in the tumorigenesis of undifferentiated NB. This tumor might abrogate the transactivating function of p53 by inhibiting its access to the nucleus, rather than by gene mutation. Importantly, our results suggest that (i) this could be a general mechanism for p53 inactivation not limited to breast cancer (where we first described it) and that (ii) it is found in a tumor previously not thought to be affected by p53 alteration.