341 resultados para bax
Resumo:
Nucleoside analogs are a class of chemotherapeutic agents with tremendous utility in treating viral infections and cancers. Traditional nucleoside analogs are DNA-directed. However, there is a new group of nucleoside analogs that induce cell death by a direct effect on RNA synthesis. The adenosine analog, 8-chloroadenosine, is incorporated into RNA and is currently in clinical trials. Another congener, 8-amino-adenosine has demonstrated toxicity in multiple myeloma cell lines. Like other nucleoside analogs, 8-amino-adenosine must be metabolized to its triphosphate to elicit a cytotoxic effect. Furthermore, 8-amino-adenosine causes a decline of the intracellular ATP pool and inhibits mRNA poly(A) adenylation. ^ Because of the previously known adenosine analog mechanism as well as the scope of the RNA directed nucleoside analog field, I hypothesized there are multiple mechanisms of transcription inhibition mediating 8-amino-adenosine-induced cell death. Prior to investigating these mechanisms, cell death by 8-amino-adenosine was characterized. 8-Amino-adenosine activates PARP cleavage and induces the caspase cascade. 8-Amino-adenosine increases Annexin V binding and the mitochondrial membrane permeability in wild-type MEF cells. In BAX/BAK deficient MEF cells, 8-amino-adenosine decreases the mitochondrial membrane permeability and induces autophagy. ^ Once cell death was characterized, the mechanisms of 8-amino-adenosine transcription inhibition were assessed. It was established that 8-aminoadenosine treatment causes 8-amino-ATP accumulation and decreases the intracellular ATP concentration, resulting in RNA synthesis inhibition. Several other mechanisms are identified. First, a relationship between ATP decline by 8-amino-adenosine or other known ATP synthesis inhibitors and RNA synthesis is established indicating that effects on cellular bioenergy, regardless of the mechanism of ATP decline, can decrease RNA synthesis. Second, 8-aminoadenosine treatment decreases the phosphorylation of serine residues on the RNA polymerase II C-terminal domain which regulates transcription initiation and elongation. Third, evidence is provided to demonstrate 8-amino-ATP is a substrate for RNA synthesis. Fourth, 8-amino-ATP is incorporated at the 3'-terminal position leading to chain termination. Finally, in vitro transcription assays show that 8-amino-ATP may compete with ATP to decrease de novo mRNA synthesis. Overall, this work demonstrates 8-amino-adenosine is a cytotoxic nucleoside analog that functions to inhibit RNA transcription through multiple mechanisms. ^
Resumo:
p53 functions as a tumor suppressor through its ability to initiate either growth arrest or apoptosis in cells which have sustained DNA damage. p53 elicits these cellular phenotypes through its biochemical function as a transcriptional activator. By inducing the expression of a battery of target genes, p53 is able to prevent the propagation of cells with damaged DNA. However, the genes transcriptionally induced by p53 which have been identified to date do not fully explain p53 function. p53 has been demonstrated to activate genes involved in cell cycle inhibition, apoptosis and cell proliferation. The reasons for simultaneous activation of p53 targets with disparate, opposing functions are not clear, but may be due to the use of transformed cell lines in previous experiments. In the studies presented in this thesis, the pathway of p53 tumor suppression has been studied in detail in two systems chosen for their relevance to the natural cell environment. One utilizes a normal, unaltered cultured cell system; the other the whole mouse. In order to better understand the role of the known p53 targets in effecting p53 function in normal cells, early rat embryo fibroblasts were irradiated with ultraviolet light to induce DNA damage. It was discovered that p53 protein levels increased in response to irradiation. The known targets of p53, namely, $p21\sp{WAF1/CIP1},\ mdm2,\ cyclin\ G,$ and bax, were shown for the first time to have a differential temporal induction. The growth suppressor $p21\sp{WAF1/CIP1}$ was induced first, followed by cyclin G then mdm2, which is involved in proliferation through its inactivation of p53, and finally, the apoptosis promoter, bax. These findings indicated that p53 activates its target genes in a manner to allow maximum effectiveness of target function. The rat embryo fibroblasts were shown to undergo apoptosis 24 h after irradiation. Additionally, investigation of these cells for cell cycle alterations demonstrated a brief arrest in G1. In the second study, thymocytes from mice with wild type p53 were shown to undergo apoptosis and activate p53 target genes upon ionizing radiation treatment, while thymocytes from mice deficient in p53 could not. The p53 target genes mdm2 and fas were tested in vivo for their ability to mediate p53-regulated apoptosis, and were found dispensible for that cellular function. Therefore, the p53 targets identified to date do not fully explain the ability of p53 to function as a tumor suppressor. Potentially, functional redundancy between the known targets would account for the data seen in these experiments. Additionally, identification of additional target genes should add further understanding of the p53 pathway of tumor suppression. ^
Resumo:
Follicular lymphoma is the most common lymphoid malignancy in humans. The bcl-2 transgenic mice, which mimic the human follicular lymphoma, initially exhibit a polyclonal hyperplasia due to the overriding of apoptosis by deregulated bcl-2. After a latency period of 15 month 20% of the animals developed clonal lymphomas. Approximately, 50% of these high grade lymphomas presented chromosomal translocations involving c-myc, suggesting that deregulation of this gene is important in the complementation with bcl-2. E$\mu$-myc x bcl-2 double transgenic mice were generated to assess the ability of this two genes to complement in an in vivo system. The double transgenic mice presented a shortened latency (3-4 weeks) and higher incidence of tumor development. Quantification of the extent of programmed cell death indicated that bcl-2 can abrogate the high rate of apoptotic cell death that results from myc deregulation. Bcl-2-Ig, E$\mu$-myc, and bcl-2/E$\mu$-myc lymphomas were examined using PCR-SSCP to detect the presence of p53 mutations in exons 5-9. A high incidence of p53 mutations in E$\mu$-myc lymphomas suggested that inactivating lesions of p53 may represent an important step in the genetic complementation of c-myc in lymphomagenesis. Surprisingly, p53 mutations were quite uncommon in bcl-2 lymphomas suggesting that inactivating mutations of p53 and overexpression of bcl-2 may not cooperate in lymphoma progression. To assess this question, we generated mice that contained a deregulated bcl-2 gene and were nullizygous for p53 (p53KO). No reduction in the tumor latency was observed in the p53KO/bcl-2-Ig hybrid mice when compared with p53 KO mice. Using splenic mononuclear cells isolated from p53KO mice and bcl-2 transgenic mice we demonstrated that bcl-2 suppresses p53 mediated apoptosis in response to DNA damage initiated by $\gamma$-radiation even though p53 protein is induced normally in the bcl-2 overexpressing cells. Western analysis of the expression of p53 target proteins after $\gamma$-radiation showed a correlation between the p53-dependent induction of bax protein after radiation and the ability of p53 to mediate apoptosis. ^
Resumo:
The fine balance between proliferation and apoptosis plays a primary role in carcinogenesis. Proto-oncogenes that induce both proliferation and apoptosis provide a powerful inbuilt system to inhibit clonal expansion of cells with high proliferation rates. This provides a restraint to the development of neoplasms. C-myc expressing cells undergo apoptosis in low serum by an unknown mechanism. Several lines of evidence suggested that c-myc induces apoptosis by a transcriptional mechanism. However, the target genes of this program have not been fully defined. Protein synthesis inhibitors induce apoptosis in c-myc over-expressing cells at high serum levels suggesting that inhibition of synthesis of a survival factor may induce apoptosis. We show that the expression of c-myc directly correlates with an increase in the level of a survival protein, bcl-$\rm x\sb{L},$ and a decrease in the pro-apoptotic protein, bax, at both the protein and mRNA level. Furthermore, a significant decrease of the bcl-$\rm x\sb{L}$ protein levels is observed under low serum conditions. In order to investigate the mechanism of regulation of bcl-$\rm x\sb{L}$ and bax by c-myc, the bcl-x and bax promoters were cloned, sequenced and shown to contain c-myc binding sites. The chloramephenicol acetyl transferase (CAT) reporter assay was used to demonstrate activation of the bcl-x promoter by increasing levels of c-myc when co-transfected in COS cells. The bax promoter was also shown to be transrepressed in c-myc expressing cells. The role of bcl-$\rm x\sb{L}$ in apoptosis regulation in c-myc cell lines in normal and low serum was then investigated. Cells lines expressing c-myc and bcl-$\rm x\sb{L}$ were generated and were shown to be resistant to apoptosis induction in low serum. Furthermore, cell lines expressing c-myc, anti-sense bcl-$\rm x\sb{L}$ and $\beta$-galactosidase demonstrated significantly enhanced rates of apoptosis in high serum compared to c-myc Rat 1a cells. These findings suggest that c-myc activates a survival program involving bcl-$\rm x\sb{L}$ upregulation and bax downregulation. However, this survival signal is reduced under low serum conditions by the relative downregulation of bcl-$\rm x\sb{L}$ allowing for apoptosis to proceed. These data also directly demonstrates that downregulation in the level of bcl-$\rm x\sb{L}$ associated with low serum conditions is a critical determinant of c-myc induced apoptosis. ^
Resumo:
The p53 gene is known to be one of the most commonly mutated genes in human cancers. Many squamous cell carcinomas of the head and neck (SCCHNs) have been shown to contain nonfunctional p53 as well. The use of p53-mediated gene therapy to treat such cancers has become an intensive area of research. Although there have been varied treatment responses to p53 gene therapy, the role that endogenous p53 status plays in this response has not been thoroughly examined. Because of this, the hypothesis of this study examined the role that the endogenous p53 status of cells plays in their response to p53 gene therapy. To test this, an adenoviral vector containing p53 (p53FAd) was administered to three squamous cell carcinoma lines with varied endogenous p53. The SCC9 cell line demonstrates no p53 protein expression, the SCC4 cell line displays overexpression of a mutant p53 protein, and the 1986LN cell line displays low to no expression of wild-type p53 protein as a consequence of human papillomavirus infection. After treatment with p53FAd, the cells were examined for evidence of exogenous p53 expression, growth suppression, alterations in cellular proteins, G1 growth arrest, apoptosis, and differentiation state. Each cell line exhibited exogenous p53 protein. Growth suppression was seen most prominently in the SCC9 cells, to some extent in the 1986LN cells, and little was seen with the SCC4 cells. WAF1/p21 protein was induced in all three cell lines, while PCNA, bcl-2, and bax expression was not significantly affected in any of the lines. Apoptosis developed first in SCC9 cells, next in 1986LN cells, with little seen in the SCC4 cells. The SCC9 line was the only line to show significant GI growth arrest. No significant differences were observed in the overall expression of differentiation markers, aside from increased keratin 13 mRNA levels in all three lines indicating a possible tendency toward differentiation. This study indicates that the endogenous p53 status of squamous cell carcinomas appears to play a critical role in determining the response to p53 adenoviral gene therapy. ^
Resumo:
p53 is required for the maintenance of the genomic stability of cells. Mutations in the p53 tumor-suppressor gene occur in more than 50% of human cancers of diverse types. In addition, 70% of families with Li-Fraumeni syndrome have a germline mutation in p53, predisposing these individuals to multiple forms of cancer. In response to DNA damage, p53 becomes stabilized and activated. However the exact mechanism by which DNA damage signals the stabilization and activation of p53 still remains elusive. The biochemical activity of p53 that is required for tumor suppression, and presumably the cellular response to DNA damage, involves the ability of the protein to bind to specific DNA sequences and to function as a transcription factor. For the downstream targets, p53 transactivates many genes involved in growth arrest, apoptosis and DNA repair such as p21, Bax and GADD45, respectively. An open question in the field is how cells can determine the downstream effects of p53. ^ We hypothesize that, through its associated proteins, p53 can differentially transactivate its target genes, which determine its downstream effect. Additionally, p53 interacting proteins may be involved in signaling for the stabilization and activation of p53. Therefore, a key aspect to understanding p53 function is the identification and analysis of proteins that interact with it. We have employed the Sos recruitment system (SRS), a cytoplasmic yeast two-hybrid screen to identify p53 interacting proteins. The SRS is based on the ability of Sos to activate Ras when it becomes localized to the plasma membrane. The system takes advantage of an S. cerevisiae strain, cdc25-2 temperature sensitive mutant, harboring a mutation in Sos. In this strain, fusion proteins containing a truncated Sos will only localize to the membrane by protein-protein interaction, which allows growth at non-permissive temperature. This system allows the use of intact transcriptional activators such as p53. ^ To date, using a modified SRS library screen to identify p53 interacting proteins, I have identified p53 (known to interact with itself) and a novel p53-interacting protein (PIP). PIP is a specific p53 interacting protein in the SRS. The interaction of p53 and PIP was further confirmed by performing in vitro and in vivo binding assays. In the in vivo binding study, the interaction can only be detected in the presence of ionizing radiation suggesting that this interaction might be involved in DNA-damage induced p53-signalling pathway. After screening cDNA and genomic libraries, a full-length PIP-cDNA clone ( ∼ 3kb) was obtained which encodes a protein of 429 amino acids with calculated molecular weight of 46 kDa. The results of genebank search indicated that the PIP is an unidentified gene and contains a conserved ring-finger domain, which is present in a diverse family of regulatory proteins involved in different aspects of cellular function. Northern blot analysis revealed that the size of its messenge is approximately 3 kb preferentially expressed in brain, heart, liver and kidney. The PIP protein is mainly located in the cytoplasm as determined by the cellular localization of a green fluorescence fusion protein. Preliminary functional analysis revealed that PIP downregulated the transactivation activity of p53 on both p21 and mdm2 promoters. Thus, PIP may be a novel negative regulator of p53 subsequent to DNA damage. ^
Resumo:
The p53 tumor suppressor gene product is negatively regulated by the product of its downstream target, mdm2. The mdm2 oncogene abrogates p53 transactivation function. Amplification of mdm2 occurs in 36% of human sarcomas, which often retain p53 in wild type form, suggesting that overexpression of mdm2 in tumors results in p53 inactivation. Thus, the relationship of p53 to mdm2 is important in tumorigenesis. The deletion of mdm2 in the mouse results in embryonic lethality by 5.5 days post coitum. Embryonic lethality of the mdm2 null embryos was overcome by simultaneous loss of the p53 tumor suppressor, which substantiates the importance of the negative regulatory function of MDM2 on p53 function in vivo. These data suggest that the loss of MDM2 function allowed the constitutively active p53 protein to induce either a complete G1 arrest or the p53-dependent apoptotic pathway, resulting in the death of the mdm2−/− embryos.^ The present study examines the hypothesis that the absence of mdm2 induces apoptosis due to p53 activation. Viability of the p53−/−mdm2−/− mice has allowed establishment of mouse embryo fibroblasts (MEFs) and a detailed examination of the properties of these cells. To introduce p53 into this system, and essentially recreate a mdm2 null cell, a temperature sensitive p53 (tsp53) point mutant (A135V) was used, which exhibits a nonfunctional, mutant conformation at 39°C and wild type, functional conformation at 32°C. Infected pools of p53−/− and p53−/−mdm2−/− MEFs with the tsp53 gene were established and single-cell clonal populations expressing tsp53 were selected. Shifting the cells from 39°C to 32°C caused p53−/−mdm2 −/− lines expressing tsp53 to undergo up to 80% apoptosis, which did not occur in the p53−/− lines expressing tsp53 nor the parental lines lacking p53 expression. Furthermore, the amount of p53 present in the clonal population determined the extent of apoptosis. Tsp53 is transcriptionally active in this system, however, it discriminates among different target promoters and does not induce the apoptosis effector targets bax or Fas/Apo1. ^ In summary, this study indicates that the presence or absence of mdm2 is the determining factor for the ability of p53 to trigger apoptosis in this system. The loss of mdm2 promotes p53-dependent apoptosis in MEFs in a cell cycle and dose-dependent manner. p53 is differentially phosphorylated in the presence and absence of mdm2, but does not induce the apoptosis effectors, bax or Fas/ Apo1. ^
Resumo:
La nefropatía obstructiva puede ser un desorden renal complejo de tratar debido al severo cuadro inflamatorio, desbalance oxidativo, apoptosis y fibrosis. Estudios previos sostienen que rosuvastatina (Ros) podría tener utilidad como una opción terapéutica en enfermedades renales que cursarían con apoptosis y fibrosis. Objetivo: Evaluar los posibles efectos antiapoptóticos y antifibróticos de Ros durante la obstrucción ureteral unilateral en ratas neonatas. Materiales y Métodos: Ratas Wistar neonatas de 48 hs. de vida fueron intervenidas quirúrgicamente (grupo experimental) o no (grupo control). Ambos grupos fueron subdivididos en tratadas o no tratadas con Ros (10mg / kg por día) vía oral durante 14 días. Posteriormente se procedió a nefrectomizar y procesar las cortezas renales para determinar por RT-PCR las expresiones de genes: óxido nítrico sintasa inducible (iNOS), factor promotor génico de chaperonas (hsf1), proteína de shock térmico (hsp70), bax, bcL2, wt1, p53, snail, proteína morfogénica del hueso (bmp7), caderina E, factor transformador de crecimiento (tgf-β) y factor de necrosis tumoral (tnf-α). Resultados: La obstrucción ureteral unilateral neonatal indujo una marcada fibrosis y apoptosis, mientras que el tratamiento con Ros moduló el patrón de genes fibróticos y apoptóticos mediante disminución de la expresión de bmp7, caderina E, wt1, p53 y bcl2; además indujo una caída en la expresión de los genes profibróticos y proapoptóticos (bax, tnf-α y tgf-β). El análisis de los resultados presentados, permiten sugerir que la protección renal de rosuvastatina durante nefropatía obstructiva de ratas neonatas estaría asociado a la interacción entre hsp70 y la biodisponibilidad del óxido nítrico con el concomitante descenso en genes pro-apoptóticos.
Resumo:
A differentiation induction subtraction hybridization strategy is being used to identify and clone genes involved in growth control and terminal differentiation in human cancer cells. This scheme identified melanoma differentiation associated gene-7 (mda-7), whose expression is up-regulated as a consequence of terminal differentiation in human melanoma cells. Forced expression of mda-7 is growth inhibitory toward diverse human tumor cells. The present studies elucidate the mechanism by which mda-7 selectively suppresses the growth of human breast cancer cells and the consequence of ectopic expression of mda-7 on human breast tumor formation in vivo in nude mice. Infection of wild-type, mutant, and null p53 human breast cancer cells with a recombinant type 5 adenovirus expressing mda-7, Ad.mda-7 S, inhibited growth and induced programmed cell death (apoptosis). Induction of apoptosis correlated with an increase in BAX protein, an established inducer of programmed cell death, and an increase in the ratio of BAX to BCL-2, an established inhibitor of apoptosis. Infection of breast carcinoma cells with Ad.mda-7 S before injection into nude mice inhibited tumor development. In contrast, ectopic expression of mda-7 did not significantly alter cell cycle kinetics, growth rate, or survival in normal human mammary epithelial cells. These data suggest that mda-7 induces its selective anticancer properties in human breast carcinoma cells by promoting apoptosis that occurs independent of p53 status. On the basis of its selective anticancer inhibitory activity and its direct antitumor effects, mda-7 may represent a new class of cancer suppressor genes that could prove useful for the targeted therapy of human cancer.
Resumo:
In the intracellular death program, hetero- and homodimerization of different anti- and pro-apoptotic Bcl-2-related proteins are critical in the determination of cell fate. From a rat ovarian fusion cDNA library, we isolated a new pro-apoptotic Bcl-2 gene, Bcl-2-related ovarian killer (Bok). Bok had conserved Bcl-2 homology (BH) domains 1, 2, and 3 and a C-terminal transmembrane region present in other Bcl-2 proteins, but lacked the BH4 domain found only in anti-apoptotic Bcl-2 proteins. In the yeast two-hybrid system, Bok interacted strongly with some (Mcl-1, BHRF1, and Bfl-1) but not other (Bcl-2, Bcl-xL, and Bcl-w) anti-apoptotic members. This finding is in direct contrast to the ability of other pro-apoptotic members (Bax, Bak, and Bik) to interact with all of the anti-apoptotic proteins. In addition, negligible interaction was found between Bok and different pro-apoptotic members. In mammalian cells, overexpression of Bok induced apoptosis that was blocked by the baculoviral-derived cysteine protease inhibitor P35. Cell killing induced by Bok was also suppressed following coexpression with Mcl-1 and BHRF1 but not with Bcl-2, further indicating that Bok heterodimerized only with selective anti-apoptotic Bcl-2 proteins. Northern blot analysis indicated that Bok was highly expressed in the ovary, testis and uterus. In situ hybridization analysis localized Bok mRNA in granulosa cells, the cell type that underwent apoptosis during follicle atresia. Identification of Bok as a new pro-apoptotic Bcl-2 protein with restricted tissue distribution and heterodimerization properties could facilitate elucidation of apoptosis mechanisms in reproductive tissues undergoing hormone-regulated cyclic cell turnover.
Resumo:
p53 tumor suppressor protein negatively regulates cell growth, mainly through the transactivation of its downstream target genes. As a sequence-specific DNA binding transcription factor, p53 specifically binds to a 20-bp consensus motif 5′-PuPuPuC(A/T) (T/A)GPyPyPyPuPuPuC(A/T)(T/A)GPyPyPy-3′. We have now identified, partially purified, and characterized an additional ≈40-kDa nuclear protein, p53CP (p53 competing protein), that specifically binds to the consensus p53 binding sites found in several p53 downstream target genes, including Waf-1, Gadd45, Mdm2, Bax, and RGC. The minimal sequence requirement for binding is a 14-bp motif, 5′-CTTGCTTGAACAGG-3′ [5′-C(A/T)(T/A)GPyPyPyPuPuPuC(A/T)(T/A)G-3′], which includes the central nucleotides of the typical p53 binding site with one mismatch. p53CP and p53 (complexed with antibody) showed a similar binding specificity to Waf-1 site but differences in Gadd45 and T3SF binding. Like p53, p53CP also binds both double- and single-stranded DNA oligonucleotides. Important to note, cell cycle blockers and DNA damaging reagents, which induce p53 binding activity, were found to inhibit p53CP binding in p53-positive, but not in p53-negative, cells. This finding suggested a p53-dependent coordinate regulation of p53 and p53CP in response to external stimuli. p53CP therefore could be a third member of the p53 family, in addition to p53 and p73, a newly identified p53 homolog. p53CP, if sequestering p53 from its DNA binding sites through competitive binding, may provide a novel mechanism of p53 inactivation. Alternatively, p53CP may have p53-like functions by binding and transactivating p53 downstream target genes. Cloning of the p53CP gene ultimately will resolve this issue.
Resumo:
We have proposed that reduced activity of inosine-5′-monophosphate dehydrogenase (IMPD; IMP:NAD oxidoreductase, EC 1.2.1.14), the rate-limiting enzyme for guanine nucleotide biosynthesis, in response to wild-type p53 expression, is essential for p53-dependent growth suppression. A gene transfer strategy was used to demonstrate that under physiological conditions constitutive IMPD expression prevents p53-dependent growth suppression. In these studies, expression of bax and waf1, genes implicated in p53-dependent growth suppression in response to DNA damage, remains elevated in response to p53. These findings indicate that under physiological conditions IMPD is a rate-determining factor for p53-dependent growth regulation. In addition, they suggest that the impd gene may be epistatic to bax and waf1 in growth suppression. Because of the role of IMPD in the production and balance of GTP and ATP, essential nucleotides for signal transduction, these results suggest that p53 controls cell division signals by regulating purine ribonucleotide metabolism.
Resumo:
We have shown previously that interleukin-4 (IL-4) protects TS1αβ cells from apoptosis, but very little is known about the mechanism by which IL-4 exerts this effect. We found that Akt activity, which is dependent on phosphatidylinositol 3 kinase, is reduced in IL-4-deprived TS1αβ cells. Overexpression of wild-type Akt or a constitutively active Akt mutant protects cells from IL-4 deprivation-induced apoptosis. Readdition of IL-4 before the commitment point is able to restore Akt activity. We also show expression and c-Jun N-terminal kinase 2 activation after IL-4 deprivation. Overexpression of the constitutively activated Akt mutant in IL-4-deprived cells correlates with inhibition of c-Jun N-terminal kinase 2 activity. Finally, TS1αβ survival is independent of Bcl-2, Bcl-x, or Bax.
Resumo:
We cloned a new inhibitor of apoptosis protein (IAP) homolog, SfIAP, from Spodoptera frugiperda Sf-21 cells, a host of insect baculoviruses. SfIAP contains two baculovirus IAP repeat domains followed by a RING domain. SfIAP has striking amino acid sequence similarity with baculoviral IAPs, CpIAP and OpIAP, suggesting that baculoviral IAPs may be host-derived genes. SfIAP and baculoviral CpIAP inhibit Bax but not Fas-induced apoptosis in human cells. Their apoptosis-suppressing activity in mammalian cells requires both baculovirus IAP repeat and RING domains. Further biochemical data suggest that SfIAP and CpIAP are specific inhibitors of mammalian caspase-9, the pinnacle caspase in the mitochondria/cytochrome c pathway for apoptosis, but are not inhibitors of downstream caspase-3 and caspase-7. Thus the mechanisms by which insect and baculoviral IAPs suppress apoptosis may involve inhibition of an insect caspase-9 homologue. Peptides representing the IAP-binding domain of the Drosophila cell death protein Grim abrogated human caspase suppression by SfIAP and CpIAP, implying evolutionary conservation of the functions of IAPs and their inhibitors.
Resumo:
Bcl2 phosphorylation at Ser-70 may be required for the full and potent suppression of apoptosis in IL-3-dependent myeloid cells and can result from agonist activation of mitochondrial protein kinase C (PKC). Paradoxically, expression of exogenous Bcl2 can protect parental cells from apoptosis induced by the potent PKC inhibitor, staurosporine (stauro). High concentrations of stauro of up to 1 μM only partially inhibit IL-3-stimulated Bcl2 phosphorylation but completely block PKC-mediated Bcl2 phosphorylation in vitro. These data indicate a role for a stauro-resistant Bcl2 kinase (SRK). We show that aurintricarboxylic acid (ATA), a nonpeptide activator of cellular MEK/mitogen-activated protein kinase (MAPK) kinase, can induce Ser-70 phosphorylation of Bcl2 and support survival of cells expressing wild-type but not the phosphorylation-incompetent S70A mutant Bcl2. A role for a MEK/MAPK as a responsible SRK was implicated because the highly specific MEK/MAPK inhibitor, PD98059, also can only partially inhibit IL-3-induced Bcl2 phosphorylation, whereas the combination of PD98059 and stauro completely blocks phosphorylation and synergistically enhances apoptosis. p44MAPK/extracellular signal-regulated kinase 1 (ERK1) and p42 MAPK/ERK2 are activated by IL-3, colocalize with mitochondrial Bcl2, and can directly phosphorylate Bcl2 on Ser-70 in a stauro-resistant manner both in vitro and in vivo. These findings suggest a role for the ERK1/2 kinases as SRKs. Thus, the SRKs can serve to functionally link the IL-3-stimulated proliferative and survival signaling pathways and, in a novel capacity, may explain how Bcl2 can suppress stauro-induced apoptosis. In addition, although the mechanism of regulation of Bcl2 by phosphorylation is not yet clear, our results indicate that phosphorylation may functionally stabilize the Bcl2-Bax heterodimerization.