999 resultados para axisymmetric flows


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple relationship between the initial unloading slope, the contact area, and the elastic modulus is derived for indentation in elastic-plastic solids by an indenter with an arbitrary axisymmetric smooth profile. Although the same expression was known to hold for elastic solids, the new derivation shows that it is also true for elastic-plastic solids with or without work hardening and residual stress. These results should provide a sound basis for the use of the relationship for mechanical property determination using indentation techniques. (C) 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow fields around a rotating circular cylinder in a uniform stream are computed using a low dimensional Galerkin method. Results show that the formation of a Fopple vortex pair behind a stationary circular cylinder is caused by the structural instability in the vicinity of the saddle located at the rear of the cylinder. For rotating cylinder a bifurcation diagram with the consideration of two parameters, Reynolds number Re and rotation parameter a, is built by a kinematic analysis of the steady flow fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the shock propagation through a dilute gas-particle suspension in an aligned baffle system. Numerical solution to two-phase flows induced by a planar shock wave is given based on the two-continuum model with interphase coupling. The governing equations are numerically solved by using high-resolution schemes. The computational results show the shock reflection and diffraction patterns, and the shock-induced flow fields in the 4-baffle system filled with the dusty gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steady bifurcation flows in a spherical gap (gap ratio sigma=0.18) with rotating inner and stationary outer spheres are simulated numerically for Re(c1)less than or equal to Re less than or equal to 1 500 by solving steady axisymmetric incompressible Navier-Stokes equations using a finite difference method. The simulation shows that there exist two steady stable flows with 1 or 2 vortices per hemisphere for 775 less than or equal to Re less than or equal to 1 220 and three steady stable flows with 0, 1, or 2 vortices for 1 220flows at the same Reynolds number is related with different initial conditions which on be generated by different accelerations of the inner sphere. Generation of zero-or two-vortex flow depends mainly on the acceleratio n, but that of one-vortex flow also depends on the perturbation breaking the equatorial symmetry. The mechanism of development of a saddle point in the meridional plane at higher Re number and its role in the formation of two-vortex flow are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The velocity distribution between two sidewalls is; M-shaped for the MHD channel flows with rectangular cross section and thin conducting walls in a strong transverse magnetic field. Assume that the dimensionless numbers R(m) much less than 1, M, N much greater than 1, and sigma

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper appears to be the first where the multi-temperature shock slip-relations for the thermal and chemical nonequilibrium flows are derived. The derivation is based on analysis of the influences of thermal nonequilibrium and viscous effects on the mass, momentum and energy flux balance relations at the shock wave. When the relaxation times for all internal energy modes tend to sere, the multi-temperature shock slip-relations are converted into single-temperature ones for thermal equilibrium hows. The present results can be applied to flows over vehicles of different geometries with or without angles of attack. In addition, the present single-temperature shock slip-relations are compared with those in the literature, and Some defects and limitations in the latter are clarified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new numerical method for solving the axisymmetric unsteady incompressible Navier-Stokes equations using vorticity-velocity variables and a staggered grid is presented. The solution is advanced in time with an explicit two-stage Runge-Kutta method. At each stage a vector Poisson equation for velocity is solved. Some important aspects of staggering of the variable location, divergence-free correction to the velocity held by means of a suitably chosen scalar potential and numerical treatment of the vorticity boundary condition are examined. The axisymmetric spherical Couette flow between two concentric differentially rotating spheres is computed as an initial value problem. Comparison of the computational results using a staggered grid with those using a non-staggered grid shows that the staggered grid is superior to the non-staggered grid. The computed scenario of the transition from zero-vortex to two-vortex flow at moderate Reynolds number agrees with that simulated using a pseudospectral method, thus validating the temporal accuracy of our method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A coupled map lattices with convective nonlinearity or, for short, Convective Coupled Map (CCM) is proposed in this paper to simulate spatiotemporal chaos in fluid hows. It is found that the parameter region of spatiotemporal chaos can be determined by the maximal Liapunov exponent of its complexity time series. This simple model implies a similar physical mechanism for turbulence such that the route to spatiotemporal chaos in fluid hows can be envisaged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discrete vortex method is not capable of precisely predicting the bluff body flow separation and the fine structure of flow field in the vicinity of the body surface. In order to make a theoretical improvement over the method and to reduce the difficulty in finite-difference solution of N-S equations at high Reynolds number, in the present paper, we suggest a new numerical simulation model and a theoretical method for domain decomposition hybrid combination of finite-difference method and vortex method. Specifically, the full flow. field is decomposed into two domains. In the region of O(R) near the body surface (R is the characteristic dimension of body), we use the finite-difference method to solve the N-S equations and in the exterior domain, we take the Lagrange-Euler vortex method. The connection and coupling conditions for flow in the two domains are established. The specific numerical scheme of this theoretical model is given. As a preliminary application, some numerical simulations for flows at Re=100 and Re-1000 about a circular cylinder are made, and compared with the finite-difference solution of N-S equations for full flow field and experimental results, and the stability of the solution against the change of the interface between the two domains is examined. The results show that the method of the present paper has the advantage of finite-difference solution for N-S equations in precisely predicting the fine structure of flow field, as well as the advantage of vortex method in efficiently computing the global characteristics of the separated flow. It saves computer time and reduces the amount of computation, as compared with pure N-S equation solution. The present method can be used for numerical simulation of bluff body flow at high Reynolds number and would exhibit even greater merit in that case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the case of suspension flows, the rate of interphase momentum transfer M(k) and that of interphase energy transfer E(k), which were expressed as a sum of infinite discontinuities by Ishii, have been reduced to the sum of several terms which have concise physical significance. M(k) is composed of the following terms: (i) the momentum carried by the interphase mass transfer; (ii) the interphase drag force due to the relative motion between phases; (iii) the interphase force produced by the concentration gradient of the dispersed phase in a pressure field. And E(k) is composed of the following four terms, that is, the energy carried by the interphase mass transfer, the work produced by the interphase forces of the second and third parts above, and the heat transfer between phases. It is concluded from the results that (i) the term, (-alpha-k-nabla-p), which is related to the pressure gradient in the momentum equation, can be derived from the basic conservation laws without introducing the "shared-pressure presumption"; (ii) the mean velocity of the action point of the interphase drag is the mean velocity of the interface displacement, upsilonBAR-i. It is approximately equal to the mean velocity of the dispersed phase, upsilonBAR-d. Hence the work terms produced by the drag forces are f(dc) . upsilonBAR-d, and f(cd) . upsilonBAR-d, respectively, with upsilonBAR-i not being replaced by the mean velocity of the continuous phase, upsilonBAR-c; (iii) by analogy, the terms of the momentum transfer due to phase change are upsilonBAR-d-GAMMA-c, and upsilonBAR-d-GAMMA-d, respectively; (iv) since the transformation between explicit heat and latent heat occurs in the process of phase change, the algebraic sum of the heat transfer between phases is not equal to zero. Q(ic) and Q(id) are composed of the explicit heat and latent heat, so that the sum Q(ic) + Q(id)) is equal to zero.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel possibility to determine the temperature, density and velocity simultaneously in gas flows by measuring the average value, amplitude of modulation and phase shift of the photoluminescence excited by a temporally or spatially modulated light source is investigated. Time-dependent equations taking the flow, diffusion, excitation and decay into account are solved analytically. Different experimental arrangements are proposed. Measurements of velocity with two components, and temporal and spatial resolutions in the measurements are investigated. Numerical examples are given for N z with biacetyl as the seed gas. Practical considerations for the measurements and the relation between this method and some existing methods of lifetime measurement are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The perturbation theory is applied further to the discussion of the equilibrium properties of a sunspot-like magnetic field with a strong twisted component. The basic state reduces to the usual one discussed extensively for the axisymmetric magnetostatic equilibrium with twisted component of magnetic field, and the perturbed state is described by two coupled equations. As the magnetic force-line is twisted, there is a magnetic tension in the azimuthal direction. In this case, the perturbed total pressure is no longer independent of the azimuthal variable θ, and the magnetic field in the dark penumbal fibril may be either stronger or weaker relatively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compressible laminar boundary-layer flows of a dilute gas-particle mixture over a semi-infinite flat plate are investigated analytically. The governing equations are presented in a general form where more reasonable relations for the two-phase interaction and the gas viscosity are included. The detailed flow structures of the gas and particle phases are given in three distinct regions : the large-slip region near the leading edge, the moderate-slip region and the small-slip region far downstream. The asymptotic solutions for the two limiting regions are obtained by using a seriesexpansion method. The finite-difference solutions along the whole length of the plate are obtained by using implicit four-point and six-point schemes. The results from these two methods are compared and very good agreement is achieved. The characteristic quantities of the boundary layer are calculated and the effects on the flow produced by the particles are discussed. It is found that in the case of laminar boundary-layer flows, the skin friction and wall heat-transfer are higher and the displacement thickness is lower than in the pure-gas case alone. The results indicate that the Stokes-interaction relation is reasonable qualitatively but not correct quantitatively and a relevant non-Stokes relation of the interaction between the two phases should be specified when the particle Reynolds number is higher than unity.