1000 resultados para avoin data
Resumo:
The health system is one sector dealing with a deluge of complex data. Many healthcare organisations struggle to utilise these volumes of health data effectively and efficiently. Also, there are many healthcare organisations, which still have stand-alone systems, not integrated for management of information and decision-making. This shows, there is a need for an effective system to capture, collate and distribute this health data. Therefore, implementing the data warehouse concept in healthcare is potentially one of the solutions to integrate health data. Data warehousing has been used to support business intelligence and decision-making in many other sectors such as the engineering, defence and retail sectors. The research problem that is going to be addressed is, "how can data warehousing assist the decision-making process in healthcare". To address this problem the researcher has narrowed an investigation focusing on a cardiac surgery unit. This research used the cardiac surgery unit at the Prince Charles Hospital (TPCH) as the case study. The cardiac surgery unit at TPCH uses a stand-alone database of patient clinical data, which supports clinical audit, service management and research functions. However, much of the time, the interaction between the cardiac surgery unit information system with other units is minimal. There is a limited and basic two-way interaction with other clinical and administrative databases at TPCH which support decision-making processes. The aims of this research are to investigate what decision-making issues are faced by the healthcare professionals with the current information systems and how decision-making might be improved within this healthcare setting by implementing an aligned data warehouse model or models. As a part of the research the researcher will propose and develop a suitable data warehouse prototype based on the cardiac surgery unit needs and integrating the Intensive Care Unit database, Clinical Costing unit database (Transition II) and Quality and Safety unit database [electronic discharge summary (e-DS)]. The goal is to improve the current decision-making processes. The main objectives of this research are to improve access to integrated clinical and financial data, providing potentially better information for decision-making for both improved from the questionnaire and by referring to the literature, the results indicate a centralised data warehouse model for the cardiac surgery unit at this stage. A centralised data warehouse model addresses current needs and can also be upgraded to an enterprise wide warehouse model or federated data warehouse model as discussed in the many consulted publications. The data warehouse prototype was able to be developed using SAS enterprise data integration studio 4.2 and the data was analysed using SAS enterprise edition 4.3. In the final stage, the data warehouse prototype was evaluated by collecting feedback from the end users. This was achieved by using output created from the data warehouse prototype as examples of the data desired and possible in a data warehouse environment. According to the feedback collected from the end users, implementation of a data warehouse was seen to be a useful tool to inform management options, provide a more complete representation of factors related to a decision scenario and potentially reduce information product development time. However, there are many constraints exist in this research. For example the technical issues such as data incompatibilities, integration of the cardiac surgery database and e-DS database servers and also, Queensland Health information restrictions (Queensland Health information related policies, patient data confidentiality and ethics requirements), limited availability of support from IT technical staff and time restrictions. These factors have influenced the process for the warehouse model development, necessitating an incremental approach. This highlights the presence of many practical barriers to data warehousing and integration at the clinical service level. Limitations included the use of a small convenience sample of survey respondents, and a single site case report study design. As mentioned previously, the proposed data warehouse is a prototype and was developed using only four database repositories. Despite this constraint, the research demonstrates that by implementing a data warehouse at the service level, decision-making is supported and data quality issues related to access and availability can be reduced, providing many benefits. Output reports produced from the data warehouse prototype demonstrated usefulness for the improvement of decision-making in the management of clinical services, and quality and safety monitoring for better clinical care. However, in the future, the centralised model selected can be upgraded to an enterprise wide architecture by integrating with additional hospital units’ databases.
Resumo:
This report is an update of an earlier version produced in January 2010 (see Carrington et al. 2010) which remains as an ePrint through the project’s home page. The report provides an introduction to our analyses of extant secondary data with respect to violent acts and incidents relating to males living in rural settings in Australia using data which were available in public data bases at the time of production. It clarifies important aspects of our overall approach primarily by concentrating on three elements that required early scoping and resolution.
Resumo:
This report is an update of an earlier one produced in September 2009 (see Carrington et al. 2009) which remains as an ePrint through the project’s home page. The report focuses on our examination of extant data which have been sourced with respect to self-harm and suicide among males living in regional and remote Australia and which were available in public data bases at production time. Moreover, specific areas of concern regarding elevated rates of suicide for rural males and data anomalies which emerged during our examination of these data are discussed.
Resumo:
This report is an update of an earlier one produced in January 2010 (see Carrington et al. 2010) which remains as an ePrint through the project’s home page. This report focuses on our examination of extant data which have been sourced with respect to intentional violence perpetrated or experienced by males living in regional and remote Australia . and which were available in public data bases at production. The nature of intentional violent acts can be physical, sexual or psychological or involve deprivation or neglect.
Resumo:
This report is an update of an earlier one produced in January 2010 (see Carrington et al. 2010) which remains as an ePrint through the project’s home page. This report focuses on our examination of extant data which have been sourced with respect to unintentional serious and violent harm, including injuries, to males living in regional and remote Australia . and which were available in public data bases at production. Such harm typically might be caused by, for example, transport accidents, occupational exposures and hazards, burns and so on. Thus unintentional violent harm can cause physical trauma the consequences of which can lead to chronic conditions including psychological harm or substance abuse.
Resumo:
This report is an update of an earlier one produced in January 2010 (see Carrington et al. 2010) which remains as an ePrint through the project’s home page. The report focus on our examination of extant data which have been sourced with respect to personally and socially risky behaviour associated with males living in regional and remote Australia and which were available in public data bases at production.
Resumo:
This report is an update of an earlier one produced in January 2010 (see Carrington et al. 2010) which remains as an ePrint through the project’s home page. The report considers extant data which have been sourced with respect to some of the consequences of violent acts, incidents, harms and risky behaviour involving males living in regional and remote Australia and which were available in public data bases at production.
Resumo:
Various time-memory tradeoffs attacks for stream ciphers have been proposed over the years. However, the claimed success of these attacks assumes the initialisation process of the stream cipher is one-to-one. Some stream cipher proposals do not have a one-to-one initialisation process. In this paper, we examine the impact of this on the success of time-memory-data tradeoff attacks. Under the circumstances, some attacks are more successful than previously claimed while others are less. The conditions for both cases are established.
Resumo:
With the increasing number of XML documents in varied domains, it has become essential to identify ways of finding interesting information from these documents. Data mining techniques were used to derive this interesting information. Mining on XML documents is impacted by its model due to the semi-structured nature of these documents. Hence, in this chapter we present an overview of the various models of XML documents, how these models were used for mining and some of the issues and challenges in these models. In addition, this chapter also provides some insights into the future models of XML documents for effectively capturing the two important features namely structure and content of XML documents for mining.
Resumo:
This special issue of the Journal of Urban Technology brings together five articles that are based on presentations given at the Street Computing workshop held on 24 November 2009 in Melbourne in conjunction with the Australian Computer-Human Interaction conference (OZCHI 2009). Our own article introduces the Street Computing vision and explores the potential, challenges and foundations of this research vision. In order to do so, we first look at the currently available sources of information and discuss their link to existing research efforts. Section 2 then introduces the notion of Street Computing and our research approach in more detail. Section 3 looks beyond the core concept itself and summarises related work in this field of interest.
Resumo:
In this paper we present a sequential Monte Carlo algorithm for Bayesian sequential experimental design applied to generalised non-linear models for discrete data. The approach is computationally convenient in that the information of newly observed data can be incorporated through a simple re-weighting step. We also consider a flexible parametric model for the stimulus-response relationship together with a newly developed hybrid design utility that can produce more robust estimates of the target stimulus in the presence of substantial model and parameter uncertainty. The algorithm is applied to hypothetical clinical trial or bioassay scenarios. In the discussion, potential generalisations of the algorithm are suggested to possibly extend its applicability to a wide variety of scenarios
Resumo:
Several authors stress the importance of data’s crucial foundation for operational, tactical and strategic decisions (e.g., Redman 1998, Tee et al. 2007). Data provides the basis for decision making as data collection and processing is typically associated with reducing uncertainty in order to make more effective decisions (Daft and Lengel 1986). While the first series of investments of Information Systems/Information Technology (IS/IT) into organizations improved data collection, restricted computational capacity and limited processing power created challenges (Simon 1960). Fifty years on, capacity and processing problems are increasingly less relevant; in fact, the opposite exists. Determining data relevance and usefulness is complicated by increased data capture and storage capacity, as well as continual improvements in information processing capability. As the IT landscape changes, businesses are inundated with ever-increasing volumes of data from both internal and external sources available on both an ad-hoc and real-time basis. More data, however, does not necessarily translate into more effective and efficient organizations, nor does it increase the likelihood of better or timelier decisions. This raises questions about what data managers require to assist their decision making processes.
Resumo:
Mixture models are a flexible tool for unsupervised clustering that have found popularity in a vast array of research areas. In studies of medicine, the use of mixtures holds the potential to greatly enhance our understanding of patient responses through the identification of clinically meaningful clusters that, given the complexity of many data sources, may otherwise by intangible. Furthermore, when developed in the Bayesian framework, mixture models provide a natural means for capturing and propagating uncertainty in different aspects of a clustering solution, arguably resulting in richer analyses of the population under study. This thesis aims to investigate the use of Bayesian mixture models in analysing varied and detailed sources of patient information collected in the study of complex disease. The first aim of this thesis is to showcase the flexibility of mixture models in modelling markedly different types of data. In particular, we examine three common variants on the mixture model, namely, finite mixtures, Dirichlet Process mixtures and hidden Markov models. Beyond the development and application of these models to different sources of data, this thesis also focuses on modelling different aspects relating to uncertainty in clustering. Examples of clustering uncertainty considered are uncertainty in a patient’s true cluster membership and accounting for uncertainty in the true number of clusters present. Finally, this thesis aims to address and propose solutions to the task of comparing clustering solutions, whether this be comparing patients or observations assigned to different subgroups or comparing clustering solutions over multiple datasets. To address these aims, we consider a case study in Parkinson’s disease (PD), a complex and commonly diagnosed neurodegenerative disorder. In particular, two commonly collected sources of patient information are considered. The first source of data are on symptoms associated with PD, recorded using the Unified Parkinson’s Disease Rating Scale (UPDRS) and constitutes the first half of this thesis. The second half of this thesis is dedicated to the analysis of microelectrode recordings collected during Deep Brain Stimulation (DBS), a popular palliative treatment for advanced PD. Analysis of this second source of data centers on the problems of unsupervised detection and sorting of action potentials or "spikes" in recordings of multiple cell activity, providing valuable information on real time neural activity in the brain.