971 resultados para atomic physics, quantum physics, Penning traps, proton, magnetic moment


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computer code has been developed to simulate and study the evolution of ion charge states inside the trap region of an electron beam ion trap. In addition to atomic physics phenomena previously included in similar codes such as electron impact ionization, radiative recombination, and charge exchange, several aspects of the relevant physics such as dielectronic recombination, ionization heating, and ion cloud expansion have been included for the first time in the model. The code was developed using object oriented concepts with database support, making it readable, accurate, and well organized. The simulation results show a good agreement with various experiments, and give useful information for selection of operating conditions and experiment design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of accelerators, with compute architectures different and distinct from the CPU, has become a new research frontier in high-performance computing over the past ?ve years. This paper is a case study on how the instruction-level parallelism offered by three accelerator technologies, FPGA, GPU and ClearSpeed, can be exploited in atomic physics. The algorithm studied is the evaluation of two electron integrals, using direct numerical quadrature, a task that arises in the study of intermediate energy electron scattering by hydrogen atoms. The results of our ‘productivity’ study show that while each accelerator is viable, there are considerable differences in the implementation strategies that must be followed on each.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A similar to 3 ps travelling wave chirped pulse amplified pulse at 6 x 10(14) W cm(-2) superimposed on similar to 300 ps background pulses is shown to be an efficient method to pump transient collisional excitation X-ray lasers in both Ni-like and Ne-like ions. Measurements of X-ray laser output as a function of plasma length are fitted with results of an amplified spontaneous emission model of the laser output taking account of travelling wave pumping effects. A small signal gain coefficient similar to 42 cm(-1) and a effective gain length product of similar to 18 are measured for the Ni-like Sn laser at 120 Angstrom. Simulations from a hydrodynamic and atomic physics code (EHYBRID) coupled to a ray trace code show that a spatially averaged small signal gain similar to 65 cm(-1) can be obtained in Ne-like Ge provided the optimum pumping pulse arrangement is used. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multipulse irradiation with 100 ps pulses of stripe Germanium targets is shown to enhance by up to several orders-of-magnitude the output of Ne-like Ge lasing on the J = 0-1 line at 196 Angstrom compared to single pulse pumping. Various pre-pulse and multipulse configurations have been experimentally investigated for irradiances of approximate to 4 x 10(13) W/cm(2) with a 1.06 mu m wavelength pumping laser. The ionisation balance measured by a KeV crystal spectrometer (KAP crystal) has been found to not affect the X-ray laser output. Good agreement between the experimental results and a fluid code incorporating atomic physics, gain and X-ray beam ray tracing is obtained. The code results show that the enhanced X-ray laser output is produced by multipulse irradiation reducing the electron density gradients in the gain region and simultaneously increasing the gain region spatial size. These changes reduce the effect of refraction on the X-ray laser beam propagation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex problem of a collisionally pumped Ne-like geranium laser is examined through several detailed models. The central model is EHYBRID; a 1 1/2D fluid code which self consistently treats the plasma expansion with the atomic physics of the Ne-like ion for 124 excited levels through a collisional radiative treatment. The output of EHYBRID is used as data for ray-tracing and saturation codes which generate experimental observables. A detailed description of the models is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of point-projection spectroscopy has been shown to be applicable to the study of expanding aluminum plasmas generated by approximately 80 ps laser pulses incident on massive, aluminum stripe targets of approximately 125-mu-m width. Targets were irradiated at an intensity of 2.5 +/- 0.5 x 10(13) W/cm2 in a line focus geometry and under conditions similar to those of interest in x-ray laser schemes. Hydrogenic and heliumlike aluminum resonance lines were observed in absorption using a quasicontinuous uranium back-lighter plasma. Using a pentaerythrital Bragg crystal as the dispersive element, a resolving power of approximately 3500 was achieved with spatial resolution at the 5-mu-m level in frame times of the order of 100 ps. Reduction of the data for times up to 150 ps after the peak of the incident laser pulse produced estimates of the temperature and ion densities present, as a function of space and time. The one-dimensional Lagrangian hydrodynamic code MEDUSA coupled to the atomic physics non-local-thermodynamic-equilibrium ionized material package was used to simulate the experiment in planar geometry and has been shown to be consistent with the measurements.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental and theoretical electron energy distribution functions (EEDFS) measured in and calculated for the driver of a multicusp ion source operating in hydrogen are compared. The results show that atomic physics based theoretical models can accurately predict the EEDF in such discharges if some appropriate experimentally determined quantities are used as input parameters. The magnitude and shape of the EEDF is found to be particularly sensitive to the effective surface area to volume ratio for electrons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe recent progress of an ongoing research programme aimed at producing computational science software that can exploit high performance architectures in the atomic physics application domain. We examine the computational bottleneck of matrix construction in a suite of two-dimensional R-matrix propagation programs, 2DRMP, that are aimed at creating virtual electron collision experiments on HPC architectures. We build on Ixaru's extended frequency dependent quadrature rules (EFDQR) for Slater integrals and examine the challenge of constructing Hamiltonian matrices in parallel across an m-processor compute node in a block cyclic distribution for subsequent diagonalization by ScaLAPACK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TlCu2-xFexSe2 is a p-type metal for x < 0.5 which crystallizes in a body-centred tetragonal structure. The metal atoms are situated in ab-planes, similar to 7 angstrom apart, while the metal - metal distance within the plane is similar to 2.75 angstrom. Due to the large difference in cation distances, the solid solutions show magnetic properties of mainly two-dimensional character. The SQUID measurements performed for x = 0.27 give the c-axis as the easy axis of magnetization, but also show clear hysteresis effects at 10 K, indicating a partly ferromagnetic coupling. The magnetic ordering temperature T-c is 55( 5) K as found from both SQUID and Mossbauer spectra. At T << Tc the magnetic hyperfine fields are distributed with a maximum at about 30 T, which are compared to the measured magnetic moment per iron atom, which is 0.97 mu(B)/Fe as found from SQUID measurements. The experimental results are compared to results using other methods on isostructural Tl selenides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The system TlCo2Se2-xSx has been thoroughly investigated by neutron powder diffraction and SQUID magnetometry. TlCo2Se2-xSx is a layered tetragonal structure containing atomic cobalt layers separated by a distance of 6.4 angstrom in the sulphide and 6.8 angstrom in the selenide. The solid solubility of isovalent selenium and sulphur atoms in the structure makes it possible to continuously vary the interlayer distance and thereby tune the magnetic coupling between the Co-layers. At low temperatures, the Co-atoms are ferromagnetically ordered within the layers and magnetic moments lie in the ab-plane. However, these Co-moments form a helical magnetic structure that prevails for 0 <= x <= 1.5 with a gradual decrease of the angle between adjacent Co-layers from 122 degrees to 39 degrees. For x >= 1.75, a collinear ferromagnetic structure is stable. The relationship between the coupling angle and the Co-interlayer separation shows an almost linear behaviour. The helical phase contains no net spontaneous magnetic moment up to TlCo2SeS, where a small net magnetic moment appears that increases until the ferromagnetic structure is found for 1.75 <= x <= 2.0. (C) 2005 Elsevier B.V. All rights reserved.