847 resultados para asymptotically hyperbolic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper based on the basic principles of gauge/gravity duality we compute the hall viscosity to entropy ratio in the presence of various higher derivative corrections to the dual gravitational description embedded in an asymptotically AdS(4) space time. As the first step of our analysis, considering the back reaction we impose higher derivative corrections to the abelian gauge sector of the theory where we notice that the ratio indeed gets corrected at the leading order in the coupling. Considering the probe limit as a special case we compute this leading order correction over the fixed background of the charged black brane solution. Finally we consider higher derivative (R-2) correction to the gravity sector of the theory where we notice that the above ratio might get corrected at the sixth derivative level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We apply the objective method of Aldous to the problem of finding the minimum-cost edge cover of the complete graph with random independent and identically distributed edge costs. The limit, as the number of vertices goes to infinity, of the expected minimum cost for this problem is known via a combinatorial approach of Hessler and Wastlund. We provide a proof of this result using the machinery of the objective method and local weak convergence, which was used to prove the (2) limit of the random assignment problem. A proof via the objective method is useful because it provides us with more information on the nature of the edge's incident on a typical root in the minimum-cost edge cover. We further show that a belief propagation algorithm converges asymptotically to the optimal solution. This can be applied in a computational linguistics problem of semantic projection. The belief propagation algorithm yields a near optimal solution with lesser complexity than the known best algorithms designed for optimality in worst-case settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper considers cooperative spectrum sensing algorithms for Cognitive Radios which focus on reducing the number of samples to make a reliable detection. We propose algorithms based on decentralized sequential hypothesis testing in which the Cognitive Radios sequentially collect the observations, make local decisions and send them to the fusion center for further processing to make a final decision on spectrum usage. The reporting channel between the Cognitive Radios and the fusion center is assumed more realistically as a Multiple Access Channel (MAC) with receiver noise. Furthermore the communication for reporting is limited, thereby reducing the communication cost. We start with an algorithm where the fusion center uses an SPRT-like (Sequential Probability Ratio Test) procedure and theoretically analyze its performance. Asymptotically, its performance is close to the optimal centralized test without fusion center noise. We further modify this algorithm to improve its performance at practical operating points. Later we generalize these algorithms to handle uncertainties in SNR and fading. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a system consisting of 5 dimensional gravity with a negative cosmological constant coupled to a massless scalar, the dilaton. We construct a black brane solution which arises when the dilaton satisfies linearly varying boundary conditions in the asymptotically AdS(5) region. The geometry of this black brane breaks rotational symmetry while preserving translational invariance and corresponds to an anisotropic phase of the system. Close to extremality, where the anisotropy is big compared to the temperature, some components of the viscosity tensor become parametrically small compared to the entropy density. We study the quasi normal modes in considerable detail and find no instability close to extremality. We also obtain the equations for fluid mechanics for an anisotropic driven system in general, working upto first order in the derivative expansion for the stress tensor, and identify additional transport coefficients which appear in the constitutive relation. For the fluid of interest we find that the parametrically small viscosity can result in a very small force of friction, when the fluid is enclosed between appropriately oriented parallel plates moving with a relative velocity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While the tradeoff between the amount of data stored and the repair bandwidth of an (n, k, d) regenerating code has been characterized under functional repair (FR), the case of exact repair (ER) remains unresolved. It is known that there do not exist ER codes which lie on the FR tradeoff at most of the points. The question as to whether one can asymptotically approach the FR tradeoff was settled recently by Tian who showed that in the (4, 3, 3) case, the ER region is bounded away from the FR region. The FR tradeoff serves as a trivial outer bound on the ER tradeoff. In this paper, we extend Tian's results by establishing an improved outer bound on the ER tradeoff which shows that the ER region is bounded away from the FR region, for any (n; k; d). Our approach is analytical and builds upon the framework introduced earlier by Shah et. al. Interestingly, a recently-constructed, layered regenerating code is shown to achieve a point on this outer bound for the (5, 4, 4) case. This represents the first-known instance of an optimal ER code that does not correspond to a point on the FR tradeoff.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a complete bipartite graph with vertex sets of cardinalities n and n', assign random weights from exponential distribution with mean 1, independently to each edge. We show that, as n -> infinity, with n' = n/alpha] for any fixed alpha > 1, the minimum weight of many-to-one matchings converges to a constant (depending on alpha). Many-to-one matching arises as an optimization step in an algorithm for genome sequencing and as a measure of distance between finite sets. We prove that a belief propagation (BP) algorithm converges asymptotically to the optimal solution. We use the objective method of Aldous to prove our results. We build on previous works on minimum weight matching and minimum weight edge cover problems to extend the objective method and to further the applicability of belief propagation to random combinatorial optimization problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new class of exact-repair regenerating codes is constructed by stitching together shorter erasure correction codes, where the stitching pattern can be viewed as block designs. The proposed codes have the help-by-transfer property where the helper nodes simply transfer part of the stored data directly, without performing any computation. This embedded error correction structure makes the decoding process straightforward, and in some cases the complexity is very low. We show that this construction is able to achieve performance better than space-sharing between the minimum storage regenerating codes and the minimum repair-bandwidth regenerating codes, and it is the first class of codes to achieve this performance. In fact, it is shown that the proposed construction can achieve a nontrivial point on the optimal functional-repair tradeoff, and it is asymptotically optimal at high rate, i.e., it asymptotically approaches the minimum storage and the minimum repair-bandwidth simultaneously.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents modification of the derivation of a previously proposed constitutive model for the prediction of stress-strain behavior of municipal solid waste (MSW) incorporating different mechanisms, such as immediate compression under loading, mechanical creep, and time-dependent biodegradation effect. The model is based on critical state soil mechanics incorporating increments in volumetric strains because of elastic, plastic, creep, and biodegradation effects. The improvement introduced in this paper is the modified critical state surface and considers five variable parameters for the estimation of stress-strain behavior of MSW under different loading conditions. In addition, an expression for the strain hardening rule is derived, with considerations of time-dependent mechanical creep and biodegradation effects. The model is validated using results from experimental studies and data from published literature. The results are also compared with the predictions of the stress-strain response obtained from a well-established hyperbolic model. (c) 2014 American Society of Civil Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The trapezoidal rule, which is a special case of the Newmark family of algorithms, is one of the most widely used methods for transient hyperbolic problems. In this work, we show that this rule conserves linear and angular momenta and energy in the case of undamped linear elastodynamics problems, and an ``energy-like measure'' in the case of undamped acoustic problems. These conservation properties, thus, provide a rational basis for using this algorithm. In linear elastodynamics problems, variants of the trapezoidal rule that incorporate ``high-frequency'' dissipation are often used, since the higher frequencies, which are not approximated properly by the standard displacement-based approach, often result in unphysical behavior. Instead of modifying the trapezoidal algorithm, we propose using a hybrid finite element framework for constructing the stiffness matrix. Hybrid finite elements, which are based on a two-field variational formulation involving displacement and stresses, are known to approximate the eigenvalues much more accurately than the standard displacement-based approach, thereby either bypassing or reducing the need for high-frequency dissipation. We show this by means of several examples, where we compare the numerical solutions obtained using the displacement-based and hybrid approaches against analytical solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An asymptotically-exact methodology is presented for obtaining the cross-sectional stiffness matrix of a pre-twisted moderately-thick beam having rectangular cross sections and made of transversely isotropic materials. The anisotropic beam is modeled from 3-D elasticity, without any further assumptions. The beam is allowed to have large displacements and rotations, but small strain is assumed. The strain energy of the beam is computed making use of the constitutive law and the kinematical relations derived with the inclusion of geometrical nonlinearities and initial twist. Large displacements and rotations are allowed, but small strain is assumed. The Variational Asymptotic Method is used to minimize the energy functional, thereby reducing the cross section to a point on the reference line with appropriate properties, yielding a 1-D constitutive law. In this method as applied herein, the 2-D cross-sectional analysis is performed asymptotically by taking advantage of a material small parameter and two geometric small parameters. 3-D strain components are derived using kinematics and arranged as orders of the small parameters. Warping functions are obtained by the minimization of strain energy subject to certain set of constraints that renders the 1-D strain measures well-defined. Closed-form expressions are derived for the 3-D non-linear warping and stress fields. The model is capable of predicting interlaminar and transverse shear stresses accurately up to first order.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Variational Asymptotic Method (VAM) is used for modeling a coupled non-linear electromechanical problem finding applications in aircrafts and Micro Aerial Vehicle (MAV) development. VAM coupled with geometrically exact kinematics forms a powerful tool for analyzing a complex nonlinear phenomena as shown previously by many in the literature 3 - 7] for various challenging problems like modeling of an initially twisted helicopter rotor blades, matrix crack propagation in a composite, modeling of hyper elastic plates and various multi-physics problems. The problem consists of design and analysis of a piezocomposite laminate applied with electrical voltage(s) which can induce direct and planar distributed shear stresses and strains in the structure. The deformations are large and conventional beam theories are inappropriate for the analysis. The behavior of an elastic body is completely understood by its energy. This energy must be integrated over the cross-sectional area to obtain the 1-D behavior as is typical in a beam analysis. VAM can be used efficiently to approximate 3-D strain energy as closely as possible. To perform this simplification, VAM makes use of thickness to width, width to length, width multiplied by initial twist and strain as small parameters embedded in the problem definition and provides a way to approach the exact solution asymptotically. In this work, above mentioned electromechanical problem is modeled using VAM which breaks down the 3-D elasticity problem into two parts, namely a 2-D non-linear cross-sectional analysis and a 1-D non-linear analysis, along the reference curve. The recovery relations obtained as a by-product in the cross-sectional analysis earlier are used to obtain 3-D stresses, displacements and velocity contours. The piezo-composite laminate which is chosen for an initial phase of computational modeling is made up of commercially available Macro Fiber Composites (MFCs) stacked together in an arbitrary lay-up and applied with electrical voltages for actuation. The expressions of sectional forces and moments as obtained from cross-sectional analysis in closed-form show the electro-mechanical coupling and relative contribution of electric field in individual layers of the piezo-composite laminate. The spatial and temporal constitutive law as obtained from the cross-sectional analysis are substituted into 1-D fully intrinsic, geometrically exact equilibrium equations of motion and 1-D intrinsic kinematical equations to solve for all 1-D generalized variables as function of time and an along the reference curve co-ordinate, x(1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents the development of piezocomposites made up of Macro Fiber Composites (MFCs) for aerospace applications and specifically involves, their computational analysis, material characterization and certain parametric studies. MFC was developed by NASA Langley Research Center in 1996 and currently is being distributed by Smart Material Co. 1] worldwide and finds applications both as an actuator as well as for sensor in various engineering applications. In this work, MFC is being modeled as an actuator and a theoretical formulation based on Variational Asymptotic Method (VAM) 2] is presented to analyse the laminates made up of MFCs. VAM minimizes the total electro-mechanical energy for the MFC laminate and approaches the exact solution asymptotically by making use of certain small parameters inherent to the problem through dimensional reduction. VAM provides closed form solutions for 1D constitutive law, recovery relations of warpings, 3D stress/strain fields and displacements and hence an ideal tool for carrying out parametric and design studies in such applications. VAM is geometrically exact and offers rigorous material characterization through cross-sectional analysis and dimensional reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cross-sectional stiffness matrix is derived for a pre-twisted, moderately thick beam made of transversely isotropic materials and having rectangular cross sections. An asymptotically-exact methodology is used to model the anisotropic beam from 3-D elasticity, without any further assumptions. The beam is allowed to have large displacements and rotations, but small strain is assumed. The strain energy is computed making use of the beam constitutive law and kinematical relations derived with the inclusion of geometrical nonlinearities and an initial twist. The energy functional is minimized making use of the Variational Asymptotic Method (VAM), thereby reducing the cross section to a point on the beam reference line with appropriate properties, forming a 1-D constitutive law. VAM is a mathematical technique employed in the current problem to rigorously split the 3-D analysis of beams into two: a 2-D analysis over the beam cross-sectional domain, which provides a compact semi-analytical form of the properties of the cross sections, and a nonlinear 1-D analysis of the beam reference curve. In this method, as applied herein, the cross-sectional analysis is performed asymptotically by taking advantage of a material small parameter and two geometric small parameters. 3-D strain components are derived using kinematics and arranged in orders of the small parameters. Closed-form expressions are derived for the 3-D non-linear warping and stress fields. Warping functions are obtained by the minimization of strain energy subject to certain set of constraints that render the 1-D strain measures well-defined. The zeroth-order 3-D warping field thus yielded is then used to integrate the 3-D strain energy density over the cross section, resulting in the 1-D strain energy density, which in turn helps identify the corresponding cross-sectional stiffness matrix. The model is capable of predicting interlaminar and transverse shear stresses accurately up to first order.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims at asymptotically accurate dimensional reduction of non-linear multi-functional film-fabric laminates having specific application in design of envelopes for High Altitude Airships (HAA). The film-fabric laminate for airship envelope consists of a woven fabric core coated with thin films on each face. These films provide UV protection and Helium leakage prevention, while the core provides required structural strength. This problem is both geometrically and materially non-linear. To incorporate the geometric non-linearity, generalized warping functions are used and finite deformations are allowed. The material non-linearity is handled by using hyper-elastic material models for each layer. The development begins with three-dimensional (3-D) nonlinear elasticity and mathematically splits the analysis into a one-dimensional through-the-thickness analysis and a two-dimensional (2-D) plate analysis. The through-the-thickness analysis provides the 2-D constitutive law which is then given as an input to the 2-D reference surface analysis. The dimensional reduction is carried out using Variational Asymptotic Method (VAM) for moderate strains and very small thickness-to-wavelength ratio. It features the identification and utilization of additional small parameters such as ratio of thicknesses and stiffness coefficients of core and films. Closed form analytical expressions for warping functions and 2-D constitutive law of the film-fabric laminate are obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, based on the AdS(2)/CFT1 prescription, we explore the low frequency behavior of quantum two point functions for a special class of strongly coupled CFTs in one dimension whose dual gravitational counterpart consists of extremal black hole solutions in higher derivative theories of gravity defined over an asymptotically AdS spacetime. The quantum critical points thus described are supposed to correspond to a very large value of the dynamic exponent (z -> infinity). In our analysis, we find that quantum fluctuations are enhanced due to the higher derivative corrections in the bulk which in turn increases the possibility of quantum phase transition near the critical point. On the field theory side, such higher derivative effects would stand for the corrections appearing due to the finite coupling in the gauge theory. Finally, we compute the coefficient of thermal diffusion at finite coupling corresponding to Gauss Bonnet corrected charged Lifshitz black holes in the bulk. We observe an important crossover corresponding to z = 5 fixed point. (C) 2015 The Author. Published by Elsevier B.V.