576 resultados para astronomia
Resumo:
Pós-graduação em Física - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Consider a finite body of mass m (C1) with moments of inertia A, B and C. This body orbits another one of mass much larger M (C2), which at first will be taken as a point, even if it is not completely spherical. The body C1, when orbit C2, performs a translational motion near a Keplerian. It will not be a Keplerian due to external disturbances. We will use two axes systems: fixed in the center of mass of C1 and other inertial. The C1 attitude, that is, the dynamic rotation of this body is know if we know how to situate mobile system according to inertial axes system. The strong influence exerted by C2 on C1, which is a flattened body, generates torques on C1, what affects its dynamics of rotation. We will obtain the mathematical formulation of this problem assuming C1 as a planet and C2 as the sun. Also applies to case of satellite and planet. In the case of Mercury-Sun system, the disturbing potential that governs rotation dynamics, for theoretical studies, necessarily have to be developed by powers of the eccentricity. As is known, such expansions are delicate because of the convergence issue. Thus, we intend to make a development until the third order (superior orders are not always achievable because of the volume of terms generated in cases of first-order resonances). By defining a modern set of canonical variables (Andoyer), we will assemble a disturbed Hamiltonian problem. The Andoyer's Variables allow to define averages, which enable us to discard short-term effects. Our results for the resonant angle variation of Mercury are in full agreement with those obtained by D'Hoedt & Lemaître (2004) and Rambaux & Bois (2004)
Resumo:
Pós-graduação em Física - FEG
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The dynamics of the rotation of a satellite is an old and classical problem, specially in the Euler formalism. However, with these variables, even in torque free motion problem, the integrability of the system is far from trivial, mainly when the three moments of the inertia are not equal. Another disadvantage occurs when the inclinations between some plans are null or close to zero, so the nodes become undetermined. In this work, we propose the use of modern Andoyer's variables. These are a set of canonical variables and therefore some significant advantages can be obtained when dealing with perturbation methods. On other the hand, the integrability of the torque free motion becomes very clear, as the system is reduced to a problem of one degree of freedom. The elimination of the singularities mentioned above, can be solved very easily, with Pincaré-type variables. In this work we give the background concepts of the Andoyer's variables and the disturbing potential is obtained for the rotational dynamics of a satellite perturbed by a planet. In the case when A = B (moments of inertia) and due to the current variables, the averaged system is trivially obtained through very simple integrations
Resumo:
Pós-graduação em Física - IFT
Resumo:
Pós-graduação em Física - IFT