961 resultados para aquatic macroinvertebrates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The effect of habitat fragmentation was investigated in two adjacent, yet separate, intertidal Zostera marina beds in the Salcombe Estuary, Devon, UK. The seagrass bed on the west bank comprised a continuous meadow of ca. 2.3 ha, whilst the bed on the east bank of the estuary was fragmented into patches of 6–9 m2.2. Three 10 cm diameter core samples for infaunal macroinvertebrates were taken from three stations within each bed. No significant difference was found in univariate community parameters between beds, or in measured seagrass parameters. However, multivariate analysis revealed a significant difference in community composition, due mainly to small changes in species abundance rather than differences in the species present.3. The species contributing most to the dissimilarity between the two communities were polychaetes generally associated with unvegetated habitats (e.g. Magelona mirabilis) and found to be more common in the fragmented bed.4. A significant difference in median grain size and sorting coefficient was recorded between the two beds, and median grain size was found to be the variable best explaining multivariate community patterns.5. The results of the study provide evidence for the effects of habitat fragmentation on the communities associated with seagrass beds, habitats which are of high conservation importance. As the infaunal community is perhaps intuitively the component least likely to be affected by fragmentation at the scale observed, the significant difference in community composition recorded has consequences for more sensitive and high-profile parts of the biota (e.g. fish), and thus for the conservation of seagrass habitats and their associated communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how invasive species spread is of particular concern in the current era of globalisation and rapid environmental change. The occurrence of super-diffusive movements within the context of Lévy flights has been discussed with respect to particle physics, human movements, microzooplankton, disease spread in global epidemiology and animal foraging behaviour. Super-diffusive movements provide a theoretical explanation for the rapid spread of organisms and disease, but their applicability to empirical data on the historic spread of organisms has rarely been tested. This study focuses on the role of long-distance dispersal in the invasion dynamics of aquatic invasive species across three contrasting areas and spatial scales: open ocean (north-east Atlantic), enclosed sea (Mediterranean) and an island environment (Ireland). Study species included five freshwater plant species, Azolla filiculoides, Elodea canadensis, Lagarosiphon major, Elodea nuttallii and Lemna minuta; and ten species of marine algae, Asparagopsis armata, Antithamnionella elegans, Antithamnionella ternifolia, Codium fragile, Colpomenia peregrina, Caulerpa taxifolia, Dasysiphonia sp., Sargassum muticum, Undaria pinnatifida and Womersleyella setacea. A simulation model is constructed to show the validity of using historical data to reconstruct dispersal kernels. Lévy movement patterns similar to those previously observed in humans and wild animals are evident in the re-constructed dispersal pattern of invasive aquatic species. Such patterns may be widespread among invasive species and could be exacerbated by further development of trade networks, human travel and environmental change. These findings have implications for our ability to predict and manage future invasions, and improve our understanding of the potential for spread of organisms including infectious diseases, plant pests and genetically modified organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interspecific interactions are major structuring forces in marine littoral communities; however, it is unclear which of these interactions are exhibited by many key-component species. Gut content analysis showed that the ubiquitous rocky/cobble shore amphipod Echinogammarus marinas, often ascribed as a mesograzer, consumes both algae and macroinvertebrates. Further, laboratory experiments showed that E. marinus is an active predator of such macroinvertebrates, killing and consuming the isopod Jaera nordmanni and the oligochaete Tubificoides benedii. Predatory impacts of E. marinus were not alleviated by the presence of alternative food in the form of alga discs. However, in the presence of prey, consumption of alga by E. marinus was significantly reduced. Further, survival of prey was significantly higher when substrate was provided, but predation remained significant and did not decline with further increases in substrate heterogeneity. We conclude that such amphipods can have pervasive predatory impacts on a range of species, with implications for community structure, diversity and functioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessing the effects of invading species on native community structure is often confounded by environmental factors and weakened by lack of replicated, long-term pre- and post-invasion monitoring. Here, we uncouple the community effects of a freshwater amphipod invader from environmental differences. In Irish rivers, the introduced Gammarus pulex replaces the native Gammarus duebeni celticus. However, the River Lissan in Northern Ireland is dissected by a weir that has slowed the upstream invasion by G. pulex. This allowed us in 2000 to sample three contiguous 150-m reaches that were (1) G. pulex dominated; (2) mixed Gammarus spp.; and (3) G. duebeni celticus only. In 2003, we resampled these reaches and one additional of mixed Gammarus species and one with only G. duebeni celticus further upstream. In temperature, conductivity, and pH, there were statistically significant but no biologically relevant differences among the five reaches of 2003, and between the three reaches surveyed in both years. Although there was evidence of recovery in macroinvertebrate diversity and richness in invaded reaches between years, continued upstream invasion was associated with sustained reductions in these community metrics as compared to un-invaded sites. Community ordination indicated (1) different associations of community composition attributed to the distribution, abundance, and biomass of the invader; and (2) increasing similarity of invaded communities over time. The impact mechanisms of G. pulex on macroinvertebrate community composition may include predation and competition. The consequences of the observed community changes for ecosystem functioning require further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The invasive North American amphipod Gammarus tigrinus is successfully established in Lough Neagh, Northern Ireland. Gammarus tigrinus is increasingly recognized as having significant predatory impacts on macroinverebrates, contrary to the accepted functional feeding group status of Gammarus species. The native opossum shrimp Mysis relicta overlaps in habitat use with G. tigrinus. However, its interaction with benthic macroinvertebrates is rarely appreciated. Mutual predatory interactions between G. tigrinus and M. relicta were assessed in a series of laboratory experiments. Gammarus tigrinus actively preyed on adult and juvenile M. relicta at a range of spatial scales. Females and recently molted M. relicta were particularly vulnerable to predation. Mysis relicta did not prey on adult G. tigrinus, but rapidly eliminated juvenile G. tigrinus in microcosms. Changes in dissolved 02 saturation did not alter the predatory interaction between these species. Microhabitat use by M. relicta was altered in the presence of G. tigrinus, and the presence of G. tigrinus facilitated fish predation on M. relicta. A balance of mutual predatory pressure between these invasive and native species may explain their coexistence. Both species are likely to be strongly interactive with other macroinvertebrates in both native and invasive ranges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proper application of stable isotopes (e. g., delta N-15 and delta C-13) to food web analysis requires an understanding of all nondietary factors that contribute to isotopic variability. Lipid extraction is often used during stable isotope analysis (SIA), because synthesized lipids have a low delta C-13 and can mask the delta C-13 of a consumer's diet. Recent studies indicate that lipid extraction intended to adjust delta C-13 may also cause shifts in delta N-15, but the magnitude of and reasons for the shift are highly uncertain. We examined a large data set (n = 854) for effects of lipid extraction (using Bligh and dyer's [ 1959] chloroform-methanol solvent mixtures) on the delta N-15 of aquatic consumers. We found no effect of chemically extracting lipids on the delta N-15 of whole zooplankton, unionid mussels, and fish liver samples, and found a small increase in fish muscle delta N-15 of similar to 0.4%. We also detected a negative relationship between the shift in delta N-15 following extraction and the C:N ratio in muscle tissue, suggesting that effects of extraction were greater for tissue with lower lipid content. As long as appropriate techniques such as those from Bligh and dyer (1959) are used, effects of lipid extraction on delta N-15 of aquatic consumers need not be a major consideration in the SIA of food webs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of invasion scenarios over long time periods are important to refine explanations and predictions of invasion success and impact. We used data from surveys in 1958 and 1999 of the macroinvertebrates of Lough Neagh, Northern Ireland, to assess changes in the distribution of native and introduced amphipods in relation to the wider assemblage. In 1958, the invader G. tigrinus dominated the shoreline fauna, with the native G. d. celticus present in very low numbers, whereas in 1999 the reverse was evident. In both surveys, G. tigrinus was the only amphipod present in the mid-Lough. G. tigrinus thus seems to have become established within L. Neagh, perhaps overshot and then senesced, with the native species re-establishing on the shoreline, with the invader mostly restricted to the deep mid-Lough. The non-amphipod macroinvertebrate assemblage was similar between the two surveys, in terms of Bray-Curtis community similarity, assemblage diversity, dominance and the taxa based ASPT water quality index. However, the mean density of macroinvertebrates (all taxa combined) was lower in 1999 compared to 1958, largely accounted for by a decline in oligochaete numbers. Since Gammarus species may be predators of other macroinvertebrates and influence their distribution and abundance, we investigated this trophic link in staged laboratory encounters. Both G. tigrinus and G. d. celticus preyed on isopods, alderflies, mayflies, chironomids and mysids, however, the native G. d. celticus had a significantly greater predatory impact on isopods and chironomids than did the invader G. tigrinus. While we cannot definitively ascribe cause and effect in the present scenario, we discuss how replacement of one amphipod species by another may have impacts on the wider macroinvertebrate assemblage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the increasing threats to aquatic ecosystems from invasive species, we need to elucidate the mechanisms of impacts of current and predicted future invaders. Dikerogammarus villosus, a Ponto-Caspian amphipod crustacean, is invading throughout Europe and predicted to invade the North American Great Lakes. European field studies show that populations of macroinvertebrates decline after D. villosus invasion. The mechanism of such impacts has not been addressed empirically; however, D. villosus is known to prey upon and replace other amphipods. Therefore, in this study, we used microcosm and mesocosm laboratory experiments, with both single and mixed prey species scenarios, to assess any predatory impact of D. villosus on a range of macro invertebrate taxa, trophic groups, and body sizes. Dikerogammarus villosus predatory behaviour included shredding of prey and infliction of

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The antimicrobial peptides of amphibian skin secretions are proposed to aid survival in microbe-rich environments. While many amphibians inhabit such environments, other such as the Wuyi Mountain torrent frog, Amolops wuyiensis, live in pristine waters flowing from underground mountain springs. This species thus represents an interesting model in which to study antimicrobial peptides. “Shotgun” cloning of a skin-derived cDNA library from this species identified transcripts encoding a brevinin-1 and a ranatuerin-2. Peptides with coincident molecular masses to both predicted mature peptides were identified in HPLC fractions of skin secretion. Synthetic replicates of both peptides were generated by solid-phase peptide synthesis and tested for activity using Staphylococcus aureus, Escherichia coli and Candida albicans. The brevinin was found to be broad-spectrum and potent with minimum inhibitory concentrations (MICs) of 24 µM (Sa), 5 µM (Ec) and 20 µM (Ca). In contrast, the ranatuerin was less effective and of narrower spectrum with an MIC > 200 µM for Sa, 40 µM (Ec) and 120 µM (Ca). Thus this species of amphibian that lives in a pristine environment does indeed possess at least one potent and broad-spectrum antimicrobial peptide in its skin secretion arsenal. This phenomenon could be explained in several ways. Firstly, it may represent an ancestral peptide required when the stem species inhabited microbe-rich environments. However, there is mounting evidence for the second reason, that suggests the function of such peptides is not primarily in antimicrobial defence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction of the invasive Asian cyprinid fish Pseudorasbora parva into a 0.3 ha pond in England with a fish assemblage that included Cyprinus carpio, Rutilus rutilus and Scardinius erythrophthalmus resulted in their establishment of a numerically dominant population in only 2 years; density estimates exceeded 60 ind. m(-2) and they comprised > 99% of fish present. Stable isotope analysis (SIA) revealed significant trophic overlap between P. parva, R. rutilus and C. carpio, a shift associated with significantly depressed somatic growth in R. rutilus. Despite these changes, fish community composition remained similar between the ponds. Comparison with SIA values collected from an adjacent pond free of P. parva revealed a simplified food web in P. parva presence, but with an apparent trophic position shift for several fishes, including S. erythrophthalmus which appeared to assimilate energy at a higher trophic level, probably through P. parva consumption. The marked isotopic shifts shown in all taxa in the P. parva invaded pond (C-13-enriched, N-15 depleted) were indicative of a shift to a cyanobacteria-dominated phytoplankton community. These findings provide an increased understanding of the ecological consequences of the ongoing P. parva invasion of European freshwater ecosystems.