435 resultados para analytics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human brain imaging techniques, such as Magnetic Resonance Imaging (MRI) or Diffusion Tensor Imaging (DTI), have been established as scientific and diagnostic tools and their adoption is growing in popularity. Statistical methods, machine learning and data mining algorithms have successfully been adopted to extract predictive and descriptive models from neuroimage data. However, the knowledge discovery process typically requires also the adoption of pre-processing, post-processing and visualisation techniques in complex data workflows. Currently, a main problem for the integrated preprocessing and mining of MRI data is the lack of comprehensive platforms able to avoid the manual invocation of preprocessing and mining tools, that yields to an error-prone and inefficient process. In this work we present K-Surfer, a novel plug-in of the Konstanz Information Miner (KNIME) workbench, that automatizes the preprocessing of brain images and leverages the mining capabilities of KNIME in an integrated way. K-Surfer supports the importing, filtering, merging and pre-processing of neuroimage data from FreeSurfer, a tool for human brain MRI feature extraction and interpretation. K-Surfer automatizes the steps for importing FreeSurfer data, reducing time costs, eliminating human errors and enabling the design of complex analytics workflow for neuroimage data by leveraging the rich functionalities available in the KNIME workbench.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines the impact of foreign real estate investment on the US office market capitalization rates. The geographic unit of analysis is MSA and the time period is 2001-2013. Drawing upon a database of commercial real estate transactions provided by Real Capital Analytics, we model the determinants of market capitalization rates with a particular focus on the significance of the proportion of market transactions involving foreign investors. We have employed several econometric techniques to explore the data, potential estimation biases, and test robustness of the results. The results suggest statistically significant effects of foreign investment across 38 US metro areas. It is estimated that, all else equal, a 100 basis points increase in foreign share of total investment in a US metropolitan office market causes about an 8 basis points decrease in the market cap rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reviews the literature concerning the practice of using Online Analytical Processing (OLAP) systems to recall information stored by Online Transactional Processing (OLTP) systems. Such a review provides a basis for discussion on the need for the information that are recalled through OLAP systems to maintain the contexts of transactions with the data captured by the respective OLTP system. The paper observes an industry trend involving the use of OLTP systems to process information into data, which are then stored in databases without the business rules that were used to process information and data stored in OLTP databases without associated business rules. This includes the necessitation of a practice, whereby, sets of business rules are used to extract, cleanse, transform and load data from disparate OLTP systems into OLAP databases to support the requirements for complex reporting and analytics. These sets of business rules are usually not the same as business rules used to capture data in particular OLTP systems. The paper argues that, differences between the business rules used to interpret these same data sets, risk gaps in semantics between information captured by OLTP systems and information recalled through OLAP systems. Literature concerning the modeling of business transaction information as facts with context as part of the modelling of information systems were reviewed to identify design trends that are contributing to the design quality of OLTP and OLAP systems. The paper then argues that; the quality of OLTP and OLAP systems design has a critical dependency on the capture of facts with associated context, encoding facts with contexts into data with business rules, storage and sourcing of data with business rules, decoding data with business rules into the facts with the context and recall of facts with associated contexts. The paper proposes UBIRQ, a design model to aid the co-design of data with business rules storage for OLTP and OLAP purposes. The proposed design model provides the opportunity for the implementation and use of multi-purpose databases, and business rules stores for OLTP and OLAP systems. Such implementations would enable the use of OLTP systems to record and store data with executions of business rules, which will allow for the use of OLTP and OLAP systems to query data with business rules used to capture the data. Thereby ensuring information recalled via OLAP systems preserves the contexts of transactions as per the data captured by the respective OLTP system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An important application of Big Data Analytics is the real-time analysis of streaming data. Streaming data imposes unique challenges to data mining algorithms, such as concept drifts, the need to analyse the data on the fly due to unbounded data streams and scalable algorithms due to potentially high throughput of data. Real-time classification algorithms that are adaptive to concept drifts and fast exist, however, most approaches are not naturally parallel and are thus limited in their scalability. This paper presents work on the Micro-Cluster Nearest Neighbour (MC-NN) classifier. MC-NN is based on an adaptive statistical data summary based on Micro-Clusters. MC-NN is very fast and adaptive to concept drift whilst maintaining the parallel properties of the base KNN classifier. Also MC-NN is competitive compared with existing data stream classifiers in terms of accuracy and speed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clustering methods are increasingly being applied to residential smart meter data, providing a number of important opportunities for distribution network operators (DNOs) to manage and plan the low voltage networks. Clustering has a number of potential advantages for DNOs including, identifying suitable candidates for demand response and improving energy profile modelling. However, due to the high stochasticity and irregularity of household level demand, detailed analytics are required to define appropriate attributes to cluster. In this paper we present in-depth analysis of customer smart meter data to better understand peak demand and major sources of variability in their behaviour. We find four key time periods in which the data should be analysed and use this to form relevant attributes for our clustering. We present a finite mixture model based clustering where we discover 10 distinct behaviour groups describing customers based on their demand and their variability. Finally, using an existing bootstrapping technique we show that the clustering is reliable. To the authors knowledge this is the first time in the power systems literature that the sample robustness of the clustering has been tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integration of nanostructured films containing biomolecules and silicon-based technologies is a promising direction for reaching miniaturized biosensors that exhibit high sensitivity and selectivity. A challenge, however, is to avoid cross talk among sensing units in an array with multiple sensors located on a small area. In this letter, we describe an array of 16 sensing units, of a light-addressable potentiometric sensor (LAPS), which was made with layer-by-Layer (LbL) films of a poly(amidomine) dendrimer (PAMAM) and single-walled carbon nanotubes (SWNTs), coated with a layer of the enzyme penicillinase. A visual inspection of the data from constant-current measurements with liquid samples containing distinct concentrations of penicillin, glucose, or a buffer indicated a possible cross talk between units that contained penicillinase and those that did not. With the use of multidimensional data projection techniques, normally employed in information Visualization methods, we managed to distinguish the results from the modified LAPS, even in cases where the units were adjacent to each other. Furthermore, the plots generated with the interactive document map (IDMAP) projection technique enabled the distinction of the different concentrations of penicillin, from 5 mmol L(-1) down to 0.5 mmol L(-1). Data visualization also confirmed the enhanced performance of the sensing units containing carbon nanotubes, consistent with the analysis of results for LAPS sensors. The use of visual analytics, as with projection methods, may be essential to handle a large amount of data generated in multiple sensor arrays to achieve high performance in miniaturized systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Internet of Things är ett samlingsbegrepp för den utveckling som innebär att olika typer av enheter kan förses med sensorer och datachip som är uppkopplade mot internet. En ökad mängd data innebär en ökad förfrågan på lösningar som kan lagra, spåra, analysera och bearbeta data. Ett sätt att möta denna förfrågan är att använda sig av molnbaserade realtidsanalystjänster. Multi-tenant och single-tenant är två typer av arkitekturer för molnbaserade realtidsanalystjänster som kan användas för att lösa problemen med hanteringen av de ökade datamängderna. Dessa arkitekturer skiljer sig åt när det gäller komplexitet i utvecklingen. I detta arbete representerar Azure Stream Analytics en multi-tenant arkitektur och HDInsight/Storm representerar en single-tenant arkitektur. För att kunna göra en jämförelse av molnbaserade realtidsanalystjänster med olika arkitekturer, har vi valt att använda oss av användbarhetskriterierna: effektivitet, ändamålsenlighet och användarnöjdhet. Vi kom fram till att vi ville ha svar på följande frågor relaterade till ovannämnda tre användbarhetskriterier: • Vilka likheter och skillnader kan vi se i utvecklingstider? • Kan vi identifiera skillnader i funktionalitet? • Hur upplever utvecklare de olika analystjänsterna? Vi har använt en design and creation strategi för att utveckla två Proof of Concept prototyper och samlat in data genom att använda flera datainsamlingsmetoder. Proof of Concept prototyperna inkluderade två artefakter, en för Azure Stream Analytics och en för HDInsight/Storm. Vi utvärderade dessa genom att utföra fem olika scenarier som var för sig hade 2-5 delmål. Vi simulerade strömmande data genom att låta en applikation kontinuerligt slumpa fram data som vi analyserade med hjälp av de två realtidsanalystjänsterna. Vi har använt oss av observationer för att dokumentera hur vi arbetade med utvecklingen av analystjänsterna samt för att mäta utvecklingstider och identifiera skillnader i funktionalitet. Vi har även använt oss av frågeformulär för att ta reda på vad användare tyckte om analystjänsterna. Vi kom fram till att Azure Stream Analytics initialt var mer användbart än HDInsight/Storm men att skillnaderna minskade efter hand. Azure Stream Analytics var lättare att arbeta med vid simplare analyser medan HDInsight/Storm hade ett bredare val av funktionalitet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Each year search engines like Google, Bing and Yahoo, complete trillions of search queries online. Students are especially dependent on these search tools because of their popularity, convenience and accessibility. However, what students are unaware of, by choice or naiveté is the amount of personal information that is collected during each search session, how that data is used and who is interested in their online behavior profile. Privacy policies are frequently updated in favor of the search companies but are lengthy and often are perused briefly or ignored entirely with little thought about how personal web habits are being exploited for analytics and marketing. As an Information Literacy instructor, and a member of the Electronic Frontier Foundation, I believe in the importance of educating college students and web users in general that they have a right to privacy online. Class discussions on the topic of web privacy have yielded an interesting perspective on internet search usage. Students are unaware of how their online behavior is recorded and have consistently expressed their hesitancy to use tools that disguise or delete their IP address because of the stigma that it may imply they have something to hide or are engaging in illegal activity. Additionally, students fear they will have to surrender the convenience of uber connectivity in their applications to maintain their privacy. The purpose of this lightning presentation is to provide educators with a lesson plan highlighting and simplifying the privacy terms for the three major search engines, Google, Bing and Yahoo. This presentation focuses on what data these search engines collect about users, how that data is used and alternative search solutions, like DuckDuckGo, for increased privacy. Students will directly benefit from this lesson because informed internet users can protect their data, feel safer online and become more effective web searchers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The world cup has become the most streamed live sporting event in the US, as Americans tune in to this year´s tournament on their smartphones, tablets and computers in record numbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retirado do blog de Marc Pickren do dia 13 jun. 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retirado do Vice News.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

If you’re a fan of soccer, brands, or social media you’ve been inundated online the past 24 hours. Uruguay’s World Cup forward Luis Suarez apparently bit another player before they defeated the Italian team during their final group game on Tuesday. This is his third biting offense. Good luck with those disciplinary hearings FIFA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sound the vuvuzelas, the World Cup is officially here. The biggest sporting event in the world is set to break all kinds of viewing records. Sporting in the digital world is just as much about stats as it is about the game itself. Enter Brandwatch. The social media analytics company has taken it upon itself to track social media statistics for the entire run of the World Cup with their new real-time data visualization tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pesquisa trata do acesso a partituras e sua relação com a difusão de repertório da música brasileira de concerto, a partir de um estudo de caso do Sesc Partituras, um site de disponibilização para download gratuito de partituras digitalizadas. O estudo foi realizado a partir de questionário com usuários do site e dados estatísticos de acesso gerados pelo Google Analytcs, no período de 2012 a 2014. Conclui-se que apesar de relativamente recentes os acervos digitais de partituras de música brasileira representam um grande avanço e podem contribuir bastante para a circulação da música brasileira de concerto.