908 resultados para agro-ecosystems


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review examines interregional linkages and gives an overview perspective on marine ecosystem functioning in the north-eastern Atlantic. It is based on three of the 'systems' considered by the European Network of Excellence for Ocean Ecosystems Analysis (EUR-OC EANS was established in 2004 under the European Framework VI funding programme to promote integration of marine ecological research within Europe), the Arctic and Nordic Seas, North Atlantic shelf seas and North Atlantic. The three systems share common open boundaries and the transport of water, heat, nutrients and particulates across these boundaries modifies local processes. Consistent with the EUR-OC EANS concept of 'end-to-end' analyses of marine food webs, the review takes an integrated approach linking ocean physics, lower trophic levels and working up the food web to top predators such as marine mammals. We begin with an overview of the regions focusing on the major physical patterns and their implications for the microbial community, phytoplankton, zooplankton, fish and top predators. Human-induced links between the regional systems are then considered and finally possible changes in the regional linkages over the next century are discussed. Because of the scale of potential impacts of climate change, this issue is considered in a separate section. The review demonstrates that the functioning of the ecosystems in each of the regions cannot be considered in isolation and the role of the atmosphere and ocean currents in linking the North Atlantic Ocean, North Atlantic shelf seas and the Arctic and Nordic Seas must be taken into account. Studying the North Atlantic and associated shelf seas as an integrated 'basin-scale' system will be a key challenge for the early twenty-first century. This requires a multinational approach that should lead to improved ecosystem-based approaches to conservation of natural resources, the maintenance of biodiversity, and a better understanding of the key role of the north-eastern Atlantic in the global carbon cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last few decades, global warming has accelerated both the rate and magnitude of changes observed in many functional units of the Earth System. In this context, plankton are sentinel organisms because they are sensitive to subtle levels of changes in temperature and might help in identifying the current effects of climate change on pelagic ecosystems. In this paper, we performed a comparative approach in two regions of the North Atlantic (i.e. the Northeast Atlantic and the North Sea) to explore the relationships between changes in marine plankton, the regional physico-chemical environment and large-scale hydro-climatic forcing using four key indices: the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the East Atlantic (EA) pattern and Northern Hemisphere Temperature (NHT) anomalies. Our analyses suggest that long-term changes in the states of the two ecosystems were synchronous and correlated to the same large-scale hydro-climatic variables: NHT anomalies, the AMO and to a lesser extent the EA pattern. No significant correlation was found between long-term ecosystem modifications and the state of the NAO. Our results suggest that the effect of climate on these ecosystems has mainly occurred in both regions through the modulation of the thermal regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During recent decades, historically unprecedented changes have been observed in the Arctic as climate warming has increased precipitation, river discharge, and glacial as well as sea-ice melting. Additionally, shifts in the Arctic's atmospheric pressure field have altered surface winds, ocean circulation, and freshwater storage in the Beaufort Gyre. These processes have resulted in variable patterns of freshwater export from the Arctic Ocean, including the emergence of great salinity anomalies propagating throughout the North Atlantic. Here, we link these variable patterns of freshwater export from the Arctic Ocean to the regime shifts observed in Northwest Atlantic shelf ecosystems. Specifically, we hypothesize that the corresponding salinity anomalies, both negative and positive, alter the timing and extent of water-column stratification, thereby impacting the production and seasonal cycles of phytoplankton, zooplankton, and higher-trophic-level consumers. Should this hypothesis hold up to critical evaluation, it has the potential to fundamentally alter our current understanding of the processes forcing the dynamics of Northwest Atlantic shelf ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The number of variables involved in the monitoring of an ecosystem can be high and often one of the first stages in the analysis is to reduce the number of variables. We describe a method developed for geological purposes, using the information theory, that enables selection of the most relevant variables. This technique also allows the examination of the asymmetrical relationships between variables. Applied to a set of physical and biological variables (plankton assemblages in four areas of the North Sea), the method shows that biological variables are more informative than physical variables although the controlling factors are mainly physical (sea surface temperature in winter and spring). Among biological variables, diversity measures and warm-water species assemblages are informative for the state of the North Sea pelagic ecosystems while among physical variables sea surface temperature in late winter and early spring are highly informative. Although often used in bioclimatology, the utilisation of the North Atlantic Oscillation (NAO) index does not seem to provide a lot of information. The method reveals that only the extreme states of this index has an influence on North Sea pelagic ecosystems. The substantial and persistent changes that were detected in the dynamic regime of the North Sea ecosystems and called regime shift are detected by the method and corresponds to the timing of other shifts described in the literature for some European Systems such as the Baltic and the Mediterranean Sea when both physical and biological variables are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study addresses the long-term stability of three trophic groupings in the Northeast Atlantic at regional scales. The most abundant taxa representing phytoplankton, herbivorous copepods, and carnivorous zooplankton were examined from the Continuous Plankton Recorder database. Multivariate control charts using a Bray–Curtis similarity metric were used to assess whether fluctuations within trophic groupings were within or beyond the expected variability. Two evaluation periods were examined: annual changes between 1960 and 1999 (2000–2009 baseline) and recent changes between 2000 and 2009 (1960–1999 baseline). The trends over time in abundance/biomass of trophic levels were region-specific, especially in carnivorous copepods, where abundance did not mirror trends in the overall study area. The stability of phytoplankton was within the expected limits, although not in 2008 and 2009. Higher trophic levels were less stable, perhaps reflecting the added complexity of interactions governing their abundance. In addition, some regions were consistently less stable than others. Correlations in stability between adjacent trophic levels were positive at large marine ecosystem scale but generally non-significant at regional scales. The study suggests that certain regions may be particularly vulnerable to periods of instability in community structure. The benefits of using the control chart method rather than other multivariate measures of plankton dynamics are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Northern Hemisphere has been warmer since 1980 than at any other time during the last 2000 years. The observed increase in temperature has been generally higher in northern than in southern European seas, and higher in enclosed than in open seas. Although European marine ecosystems are influenced by many other factors, such as nutrient enrichment and overfishing, every region has shown at least some changes that were most likely attributable to recent climate change. It is expected that within open systems there will generally be (further) northward movement of species, leading to a switch from polar to more temperate species in the northern seas such as the Arctic, Barents Sea and the Nordic Seas, and subtropical species moving northward to temperate regions such as the Iberian upwelling margin. For seas that are highly influenced by river runoff, such as the Baltic Sea, an increase in freshwater due to enhanced rainfall will lead to a shift from marine to more brackish and even freshwater species. If semi-enclosed systems such as the Mediterranean and the Black Sea lose their endemic species, the associated niches will probably be filled by species originating from adjacent waters and, possibly, with species transported from one region to another via ballast water and the Suez Canal. A better understanding of potential climate change impacts (scenarios) at both regional and local levels, the development of improved methods to quantify the uncertainty of climate change projections, the construction of usable climate change indicators, and an improvement of the interface between science and policy formulation in terms of risk assessment will be essential to formulate and inform better adaptive strategies to address the inevitable consequences of climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programs. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulfide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta-analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and economic costs, macroalgal blooms have ecological effects that may alter their capacity to deliver important ecosystem services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Harmful algal blooms (HABs), those proliferations of algae that can cause fish kills, contaminate seafood with toxins, form unsightly scums, or detrimentally alter ecosystem function have been increasing in frequency, magnitude, and duration worldwide. Here, using a global modeling approach, we show, for three regions of the globe, the potential effects of nutrient loading and climate change for two HAB genera, pelagic Prorocentrum and Karenia, each with differing physiological characteristics for growth. The projections (end of century, 2090-2100) are based on climate change resulting from the A1B scenario of the Intergovernmental Panel on Climate Change Institut Pierre Simon Laplace Climate Model (IPCC, IPSL-CM4), applied in a coupled oceanographic-biogeochemical model, combined with a suite of assumed physiological 'rules' for genera-specific bloom development. Based on these models, an expansion in area and/or number of months annually conducive to development of these HABs along the NW European Shelf-Baltic Sea system and NE Asia was projected for both HAB genera, but no expansion (Prorocentrum spp.), or actual contraction in area and months conducive for blooms (Karenia spp.), was projected in the SE Asian domain. The implications of these projections, especially for Northern Europe, are shifts in vulnerability of coastal systems to HAB events, increased regional HAB impacts to aquaculture, increased risks to human health and ecosystems, and economic consequences of these events due to losses to fisheries and ecosystem services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been recognised that there are strong interactions and feedbacks between climate, upper ocean biogeochemistry and marine food webs, and also that food web structure and phytoplankton community distribution are important determinants of variability in carbon production and export from the euphotic zone. Numerical models provide a vital tool to explore these interactions, given their capability to investigate multiple connected components of the system and the sensitivity to multiple drivers, including potential future conditions. A major driver for ecosystem model development is the demand for quantitative tools to support ecosystem-based management initiatives. The purpose of this paper is to review approaches to the modelling of marine ecosystems with a focus on the North Atlantic Ocean and its adjacent shelf seas, and to highlight the challenges they face and suggest ways forward. We consider the state of the art in simulating oceans and shelf sea physics, planktonic and higher trophic level ecosystems, and look towards building an integrative approach with these existing tools. We note how the different approaches have evolved historically and that many of the previous obstacles to harmonisation may no longer be present. We illustrate this with examples from the on-going and planned modelling effort in the Integrative Modelling Work Package of the EURO-BASIN programme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The social, economic, and ecological consequences of projected climate change on fish and fisheries are issues of global concern. In 2012, the International Council for the Exploration of the Sea (ICES) and the North Pacific Marine Science Organization (PICES) established a Strategic Initiative on Climate Change Effects on Marine Ecosystems (SICCME) to synthesize and to promote innovative, credible, and objective science-based advice on the impacts of climate change on marine ecosystems in the Northern Hemisphere. SICCME takes advantage of the unique and complementary strengths of the two organizations to develop a research initiative that focuses on their shared interests. A phased implementation will ensure that SICCME will be responsive to a rapidly evolving research area while delivering ongoing syntheses of existing knowledge, thereby advancing new science and methodologies and communicating new insights at each phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of phytoplankton carbon (Cphyto) in the field has been a long-sought but elusive goal in oceanography. Proxy measurements of Cphyto have been employed in the past, but are subject to many confounding influences that undermine their accuracy. Here we report the first directly measured Cphyto values from the open ocean. The Cphyto samples were collected from a diversity of environments, ranging from Pacific and Atlantic oligotrophic gyres to equatorial upwelling systems to temperate spring conditions. When compared to earlier proxies, direct measurements of Cphyto exhibit the strongest relationship with particulate backscattering coefficients (bbp) (R2=0.69). Chlorophyll concentration and total particulate organic carbon (POC) concentration accounted for ~20% less variability in Cphyto than bbp. Ratios of Cphyto to Chl a span an order of magnitude moving across and within distinct ecosystems. Similarly, Cphyto:POC ratios were variable with the lowest values coming from productive temperate waters and the highest from oligotrophic gyres. A strong relationship between Cphyto and bbp is particularly significant because bbp is a property retrievable from satellite ocean color measurements. Our results, therefore, are highly encouraging for the global monitoring of phytoplankton biomass from space. The continued application of our Cphyto measurement approach will enable validation of satellite retrievals and contribute to an improved understanding of environmental controls on phytoplankton biomass and physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytoplankton, at the base of the marine food web, represent a fundamental food source in coral reef ecosystems. The timing (phenology) and magnitude of the phytoplankton biomass are major determinants of trophic interactions. The Red Sea is one of the warmest and most saline basins in the world, characterized by an arid tropical climate regulated by the monsoon. These extreme conditions are particularly challenging for marine life. Phytoplankton phenological indices provide objective and quantitative metrics to characterize phytoplank- ton seasonality. The indices i.e. timings of initiation, peak, termination and duration are estimated here using 15 years (1997–2012) of remote sensing ocean-color data from the European Space Agency (ESA) Climate Change Initiative project (OC-CCI) in the entire Red Sea basin. The OC-CCI product, comprising merged and bias-corrected observations from three independent ocean-color sensors (SeaWiFS, MODIS and MERIS), and processed using the POLYMER algorithm (MERIS period), shows a significant increase in chlorophyll data cover- age, especially in the southern Red Sea during the months of summer NW monsoon. In open and reef-bound coastal waters, the performance of OC-CCI chlorophyll data is shown to be comparable with the performance of other standard chlorophyll products for the global oceans. These features have permitted us to investigate phytoplankton phenology in the entire Red Sea basin, and during both winter SE monsoon and summer NW monsoon periods. The phenological indices are estimated in the four open water provinces of the basin, and further examined at six coral reef complexes of particular socio-economic importance in the Red Sea, including Siyal Islands, Sharm El Sheikh, Al Wajh bank, Thuwal reefs, Al Lith reefs and Farasan Islands. Most of the open and deeper waters of the basin show an apparent higher chlorophyll concentration and longer duration of phyto- plankton growth during the winter period (relative to the summer phytoplankton growth period). In contrast, most of the reef-bound coastal waters display equal or higher peak chlorophyll concentrations and equal or lon- ger duration of phytoplankton growth during the summer period (relative to the winter phytoplankton growth period). The ecological and biological significance of the phytoplankton seasonal characteristics are discussed in context of ecosystem state assessment, and particularly to support further understanding of the structure and functioning of coral reef ecosystems in the Red Sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disentangling the roles of environmental change and natural environmental variability on biologically mediated ecosystem processes is paramount to predict future marine ecosystem functioning. Bioturbation, the biogenic mixing of sediments, has a regulating role in marine biogeochemical processes. However, our understanding of bioturbation as a community level process and of its environmental drivers is still limited by loose use of terminology, and a lack of consensus about what bioturbation is. To help resolve these challenges, this empirical study investigated the links between four different attributes of bioturbation (bioturbation depth, activity and distance, and biodiffusive transport); the ability of an index of bioturbation (BPc) to predict each of them; and their relation to seasonality, in a shallow coastal system – the Western Channel Observatory, UK. Bioturbation distance depended on changes in benthic community structure, while the other three attributes were more directly influenced by seasonality in food availability. In parallel, BPc successfully predicted bioturbation distance but not the other attributes of bioturbation. This study therefore highlights that community bioturbation results from this combination of processes responding to environmental variability at different time-scales. However, community level measurements of bioturbation across environmental variability are still scarce, and BPc is calculated using commonly available data on benthic community structure and the functional classification of invertebrates. Therefore, BPc could be used to support the growth of landscape scale bioturbation research, but future uses of the index need to consider which bioturbation attributes the index actually predicts. As BPc predicts bioturbation distance, estimated here using a random-walk model applicable to community settings, studies using either of the metrics should be directly comparable and contribute to a more integrated future for bioturbation research.