927 resultados para agricultural resources use efficiency
Resumo:
The quest for sustainable resources to meet the demands of a rapidly rising global population while mitigating the risks of rising CO2 emissions and associated climate change, represents a grand challenge for humanity. Biomass offers the most readily implemented and low-cost solution for sustainable transportation fuels, and the only non-petroleum route to organic molecules for the manufacture of bulk, fine and speciality chemicals and polymers. To be considered truly sustainable, biomass must be derived fromresources which do not compete with agricultural land use for food production, or compromise the environment (e.g. via deforestation). Potential feedstocks include waste lignocellulosic or oil-based materials derived from plant or aquatic sources, with the so-called biorefinery concept offering the co-production of biofuels, platform chemicals and energy; analogous to today's petroleum refineries which deliver both high-volume/low-value (e.g. fuels and commodity chemicals) and lowvolume/ high-value (e.g. fine/speciality chemicals) products, thereby maximizing biomass valorization. This article addresses the challenges to catalytic biomass processing and highlights recent successes in the rational design of heterogeneous catalysts facilitated by advances in nanotechnology and the synthesis of templated porous materials, as well as the use of tailored catalyst surfaces to generate bifunctional solid acid/base materials or tune hydrophobicity.
Resumo:
Isotope signatures of mangrove leaves can vary depending on discrimination associated with plant response to environmental stressors defined by gradients of resources (such as water and nutrient limitation) and regulators (such as salinity and sulfide toxicity). We tested the variability of mangrove isotopic signatures (d13C and d15N) across a stress gradient in south Florida, using green leaves from four mangrove species collected at six sites. Mangroves across the landscape studied are stressed by resource and regulator gradients represented by limited phosphorus concentrations combined with high sulfide concentrations, respectively. Foliar d13C ratios exhibited a range from 24.6 to –32.7‰, and multiple regression analysis showed that 46% of the variability in mangrove d13C composition could be explained by the differences in dissolved inorganic nitrogen, soluble reactive phosphorus, and sulfide porewater concentrations. 15N discrimination in mangrove species ranged from –0.1 to 7.7‰, and porewater N, salinity, and leaf N:Pa ratios accounted for 41% of this variability in mangrove leaves. The increase in soil P availability reduced 15N discrimination due to higher N demand. Scrub mangroves (<1.5 m tall) are more water-use efficient, as indicated by higher d13C; and have greater nutrient use efficiency ratios of P than do tall mangroves (5 to 10 m tall) existing in sites with greater soil P concentrations. The high variability of mangrove d13C and d15N across these resource and regulator gradients could be a confounding factor obscuring the linkages between mangrove wetlands and estuarine food webs. These results support the hypothesis that landscape factors may control mangrove structure and function, so that nutrient biogeochemistry and mangrove-based food webs in adjacent estuaries should account for watershed-specific organic inputs.
Resumo:
Perturbation of natural ecosystems, namely by increasing freshwater use and its degradative use, as well as topsoil erosion by water of land-use production systems, have been emerging as topics of high environmental concern. Freshwater use has become a focus of attention in the last few years for all stakeholders involved in the production of goods, mainly agro-industrial and forest-based products, which are freshwater-intensive consumers, requiring large inputs of green and blue water. This thesis presents a global review on the available Water Footprint Assessment and Life Cycle Assessment (LCA)-based methods for measuring and assessing the environmental relevance of freshwater resources use, based on a life cycle perspective. Using some of the available midpoint LCA-based methods, the freshwater use-related impacts of a Portuguese wine (white ‘vinho verde’) were assessed. However, the relevance of environmental green water has been neglected because of the absence of a comprehensive impact assessment method associated with green water flows. To overcome this constraint, this thesis helps to improve and enhance the LCA-based methods by providing a midpoint and spatially explicit Life Cycle Impact Assessment (LCIA) method for assessing impacts on terrestrial green water flow and addressing reductions in surface blue water production caused by reductions in surface runoff due to land-use production systems. The applicability of the proposed method is illustrated by a case study on Eucalyptus globulus conducted in Portugal, as the growth of short rotation forestry is largely dependent on local precipitation. Topsoil erosion by water has been characterised as one of the most upsetting problems for rivers. Because of this, this thesis also focuses on the ecosystem impacts caused by suspended solids (SS) from topsoil erosion that reach freshwater systems. A framework to conduct a spatially distributed SS delivery to freshwater streams and a fate and effect LCIA method to derive site-specific characterisation factors (CFs) for endpoint damage on aquatic ecosystem diversity, namely on algae, macrophyte, and macroinvertebrates organisms, were developed. The applicability of this framework, combined with the derived site-specific CFs, is shown by conducting a case study on E. globulus stands located in Portugal as an example of a land use based system. A spatially explicit LCA assessment was shown to be necessary, since the impacts associated with both green water flows and SS vary greatly as a function of spatial location.
Resumo:
Una alternativa para la producción de biocombustibles consiste en la transformación de residuos lignocelulósicos, entre los que se encuentran biomasas maderables y no maderables. Colombia al ser un país rico en recursos agrícolas genera grandes cantidades de residuos provenientes de monocultivos como es el café, la caña de azúcar, el banano entre otros. Los residuos de banano se producen en zonas en donde el acceso a la energía es escaso y el tratamiento actual dado a estos residuos se centra en los biológicos buscando un producto que ayude a disminuir la aplicación de fertilizantes a la tierra. Con este proyecto se busca estudiar el potencial aprovechamiento de estos residuos para su implementación como biocombustible para la combustión y obtener energía a partir de los mismos. En este trabajo se realizó una caracterización de los residuos de la planta del banano (pseudotallo y hoja) mediante análisis termogravimétrico con una termobalanza TA Instrument TGA Q500IF, con el fin de definir el contenido de los tres componentes principales (hemicelulosa, celulosa y lignina). Los experimentos fueron realizados bajo condiciones de pirólisis y por medio de un algoritmo implementado con la herramienta Scilab. Además, el objetivo fue desarrollar una herramienta para determinar los contenidos de cenizas, contenido de humedad, contenido de residuo carbonoso y contenidos de hemicelulosa, celulosa y lignina para un reactor de combustión desde un análisis termogravimétrico. Los valores encontrados permiten concluir que tanto el pseudotallo como la hoja de la planta de banano son residuos potenciales de aprovechamiento en el proceso de combustión con fines de generación de energía.
Resumo:
Macadamias, adapted to the fringes of subtropical rainforests of coastal, eastern Australia, are resilient to mild water stress. Even after prolonged drought, it is difficult to detect stress in commercial trees. Despite this, macadamia orchards in newer irrigated regions produce more consistent crops than those from traditional, rain-fed regions. Crop fluctuations in the latter tend to follow rainfall patterns. The benefit of irrigation in lower rainfall areas is undisputed, but there are many unanswered questions about the most efficient use of irrigation water. Water is used more efficiently when it is less readily available, causing partial stomatal closure that restricts transpiration more than it restricts photosynthesis. Limited research suggests that macadamias can withstand mild stress. In fact, water use efficiency can be increased by strategic deficit irrigation. However, macadamias are susceptible to stress during oil accumulation. There may be benefits of applying more water at critical times, less at others, and this may vary with cultivar. Currently, it is common for macadamia growers to apply about 20-40 L tree-1 day-1 of water to their orchards in winter and 70-90 L tree-1 day-1 in summer. Research reported water use at 20-30 L tree-1 day-1 during winter and 40-50 L tree-1 day-1 in summer using the Granier sap flow technique. The discrepancy between actual water use and farmer practice may be due to water loss via evaporation from the ground, deep drainage and/or greater transpiration due to luxury water consumption. More irrigation research is needed to develop efficient water use and to set practical limits for deficit irrigation management.
Resumo:
Nitrogen (N) is an essential plant nutrient in maize production, and if considering only natural sources, is often the limiting factor world-wide in terms of a plant’s grain yield. For this reason, many farmers around the world supplement available soil N with synthetic man-made forms. Years of over-application of N fertilizer have led to increased N in groundwater and streams due to leaching and run-off from agricultural sites. In the Midwest Corn Belt much of this excess N eventually makes its way to the Gulf of Mexico leading to eutrophication (increase of phytoplankton) and a hypoxic (reduced oxygen) dead zone. Growing concerns about these types of problems and desire for greater input use efficiency have led to demand for crops with improved N use efficiency (NUE) to allow reduced N fertilizer application rates and subsequently lower N pollution. It is well known that roots are responsible for N uptake by plants, but it is relatively unknown how root architecture affects this ability. This research was conducted to better understand the influence of root complexity (RC) in maize on a plant’s response to N stress as well as the influence of RC on other above-ground plant traits. Thirty-one above-ground plant traits were measured for 64 recombinant inbred lines (RILs) from the intermated B73 & Mo17 (IBM) population and their backcrosses (BCs) to either parent, B73 and Mo17, under normal (182 kg N ha-1) and N deficient (0 kg N ha-1) conditions. The RILs were selected based on results from an earlier experiment by Novais et al. (2011) which screened 232 RILs from the IBM to obtain their root complexity measurements. The 64 selected RILs were comprised of 31 of the lowest complexity RILs (RC1) and 33 of the highest complexity RILs (RC2) in terms of root architecture (characterized as fractal dimensions). The use of the parental BCs classifies the experiment as Design III, an experimental design developed by Comstock and Robinson (1952) which allows for estimation of dominance significance and level. Of the 31 traits measured, 12 were whole plant traits chosen due to their documented response to N stress. The other 19 traits were ear traits commonly measured for their influence on yield. Results showed that genotypes from RC1 and RC2 significantly differ for several above-ground phenotypes. We also observed a difference in the number and magnitude of N treatment responses between the two RC classes. Differences in phenotypic trait correlations and their change in response to N were also observed between the RC classes. RC did not seem to have a strong correlation with calculated NUE (ΔYield/ΔN). Quantitative genetic analysis utilizing the Design III experimental design revealed significant dominance effects acting on several traits as well as changes in significance and dominance level between N treatments. Several QTL were mapped for 26 of the 31 traits and significant N effects were observed across the majority of the genome for some N stress indicative traits (e.g. stay-green). This research and related projects are essential to a better understanding of plant N uptake and metabolism. Understanding these processes is a necessary step in the progress towards the goal of breeding for better NUE crops.
Resumo:
The use of green manures (GMs) in combination with nitrogen (N) fertilizer application is a promising practice to improve N fertilizer management in agricultural production systems. The main objective of this study was to evaluate the N use efficiency (NUE) of rice plant, derived from GMs including sunn hemp (Crotalaria juncea L.), millet (Pennisetum glaucum L.) and urea in the greenhouse. The experimental treatments included two GMs (sunn hemp-15N and millet-15N), absence of N organic source (without GM residues in soil) and four N rates, as urea-15N (0, 28.6, 57.2 and 85.8 mg N kg-1). The results showed that both rice grain and straw biomass yields under sunn hemp were greater than that of millet or without the application of GM. The NUE of rice under sunn hemp was greater than that under millet (18.9 and 7.8% under sunn hemp and millet, respectively). The urea N application rates did not affect the fertilizer NUE by rice (53.7%) with or without GMs. The NUE of GMs by rice plants ranged from 14.1% and 16.8% for root and shoot, respectively. The study showed that green manures can play an important role in enhancing soil fertility and N supply to subsequent crops.
Resumo:
Scarcity of freshwater due to recurrent drought threatens the sustainable crop production in semi-arid regions of Ethiopia. Deficit irrigation is thought to be one of the promising strategies to increase water use efficiency (WUE) under scarce water resources. A study was carried out to investigate the effect of alternate furrow irrigation (AFI), deficit irrigation (DI) and full irrigation (FI) on marketable fruit yield, WUE and physio-chemical quality of four fresh-market tomato cultivars (Fetan, Chali, Cochoro and ARP Tomato d2) in 2013 and 2014. The results showed that marketable yield, numbers of fruits per plant and fruit size were not significantly affected by AFI and DI irrigations. WUE under AFI and DI increased by 36.7% and 26.1%, respectively with close to 30% irrigation water savings achieved. A different response of cultivars to irrigation treatments was found for marketable yield, number of fruits and fruit size, WUE, total soluble solids (TSS) of the fruit juice, titratable acids (TA) and skin thickness. Cochoro and Fetan performed well under both deficit irrigation treatments exhibited by bigger fruit size which led to higher WUE. ARP Tomato d2 showed good yields under well-watered conditions. Chali had consistently lower marketable fruit yield and WUE. TSS and TA tended to increase under deficit irrigation; however, the overall variations were more explained by irrigation treatments than by cultivars. It was shown that AFI is a suitable deficit irrigation practice to increase fresh yield, WUE and quality of tomato in areas with low water availability. However, AFI requires suitable cultivars in order to exploit its water saving potential.
Resumo:
The impact of different irrigation scheduling regimes on the water use, yield and water productivity from a high-density olive grove cv. Cobrançosa in southern Portugal was assessed during the irrigation seasons of 2011, 2012, 2013 and 2014. The experiments were conducted in a commercial olive orchard at the Herdade Álamo de Cima, near Évora (38o 29' 49.44'' N, 7o 45' 8.83'' W; alt. 75 m) in southern Alentejo, Portugal. The orchard was established with 10-year old Cobrançosa trees in grids of 8.0 x 4.2 m (300 trees ha-1) in the E-W direction, and experiments conducted on a shallow sandy loam Regosoil Haplic soil. From mid-May to the end of September the orchard was irrigated and three plots were subjected to one of two irrigation treatments: a control treatment A, irrigated to replace 100% ETc, a moderate deficit irrigation treatment B irrigated to 70% of ETc, and a more severe deficit irrigation treatment C that provided for approximately 50% of ETc. Daily tree transpiration rates were obtained by continuously monitoring of sap flow in representative trees per treatment. Among the irrigated treatments, water use efficiency (WUE, ratio of water used to irrigation- water applied) of treatment C was the highest, with a value of 0.89, being treatment B slightly lower, with a WUE of 0.76. Olive harvest for 2012 was an exceptional “on year”. Bearing yields showed contrasting differences within years where an “on year” was followed by an “off year”. In 2011 and 2012 treatment B yields were 41 and 50% higher than treatment C, respectively. In 2013 treatment B yield was 45% higher than yield of the fully irrigated treatment A, and treatment C showed practically the same yield than treatment A. In the “on year” of 2014 treatment B averaged 48% higher yield than treatment C. Treatment B farm irrigation water productivity (WPI-Farm, ratio of yield to water applied) was the highest among all treatments. Treatment A showed the lowest conversion efficiency of all treatments, indicating treatment B as the adequate deficit irrigation treatment for our Cobrançosa orchard
Resumo:
Water is now considered the most important but vulnerable resource in the Mediterranean region. Nevertheless, irrigation expanded fast in the region (e.g. South Portugal and Spain) to mitigate environmental stress and to guarantee stable grape yield and quality. Sustainable wine production depends on sustainable water use in the wine’s supply chain, from the vine to the bottle. Better understanding of grapevine stress physiology (e.g. water relations, temperature regulation, water use efficiency), more robust crop monitoring/phenotyping and implementation of best water management practices will help to mitigate climate effects and will enable significant water savings in the vineyard and winery. In this paper, we focused on the major vulnerabilities and opportunities of South European Mediterranean viticulture (e.g. in Portugal and Spain) and present a multi-level strategy (from plant to the consumer) to overcome region’s weaknesses and support strategies for adaptation to water scarcity, promote sustainable water use and minimize the environmental impact of the sector.
Resumo:
São Paulo state, Brazil, has been highlighted by the sugarcane crop expansion. The actual scenario of climate and land use changes, bring attention for the large-scale water productivity (WP) analyses. MODIS images were used together with gridded weather data for these analyses. A generalized sugarcane growing cycle inside a crop land mask, from September 2011 to October 2012, was considered in the main growing regions of the state. Actual evapotranspiration (ET) is quantified by the SAFER (Simple Algorithm for Evapotranspiration Retrieving) algorithm, the biomass production (BIO) by the RUE (Radiation Use Efficiency) Monteith?s model and WP is considered as the ratio of BIO to ET. During the four generalized sugarcane crop phases, the mean ET values ranged from 0.6 to 4.0 mm day-1; BIO rates were between 20 and 200 kg ha-1 day-1, resulting in WP ranging from 2.8 to 6.0 kg m-3. Soil moisture indicators are applied, indicating benefits from supplementary irrigation during the grand growth phase, wherever there is water availability for this practice. The quantification of the large-scale water variables may subsidize the rational water resources management under the sugarcane expansion and water scarcity scenarios.
Resumo:
Monitoring agricultural crops constitutes a vital task for the general understanding of land use spatio-temporal dynamics. This paper presents an approach for the enhancement of current crop monitoring capabilities on a regional scale, in order to allow for the analysis of environmental and socio-economic drivers and impacts of agricultural land use. This work discusses the advantages and current limitations of using 250m VI data from the Moderate Resolution Imaging Spectroradiometer (MODIS) for this purpose, with emphasis in the difficulty of correctly analyzing pixels whose temporal responses are disturbed due to certain sources of interference such as mixed or heterogeneous land cover. It is shown that the influence of noisy or disturbed pixels can be minimized, and a much more consistent and useful result can be attained, if individual agricultural fields are identified and each field's pixels are analyzed in a collective manner. As such, a method is proposed that makes use of image segmentation techniques based on MODIS temporal information in order to identify portions of the study area that agree with actual agricultural field borders. The pixels of each portion or segment are then analyzed individually in order to estimate the reliability of the temporal signal observed and the consequent relevance of any estimation of land use from that data. The proposed method was applied in the state of Mato Grosso, in mid-western Brazil, where extensive ground truth data was available. Experiments were carried out using several supervised classification algorithms as well as different subsets of land cover classes, in order to test the methodology in a comprehensive way. Results show that the proposed method is capable of consistently improving classification results not only in terms of overall accuracy but also qualitatively by allowing a better understanding of the land use patterns detected. It thus provides a practical and straightforward procedure for enhancing crop-mapping capabilities using temporal series of moderate resolution remote sensing data.
Resumo:
PROJECT BRIEF Information provided by the Built Environment Industry Innovation Council as background to this project includes the following information on construction and innovation within the industry. • The construction industry contributes around $67 billion to GDP and employs around 970,000 and generates exports of nearly $150 million. • The industry has one of the lowest innovation rates of any industry in Australia, ranking third last across all Australian industries in terms of its proportion of business expenditure on innovation, and second last in terms of the proportion of income generated from innovation (ABS, 2006). • Key innovation challenges include addressing energy and water use efficiency, and housing costs in preparing for the implementation of the Carbon Pollution Reduction Scheme. The sector will need to build its capability and capacity to deliver the technical and operational expertise required.The broader Built Environment Innovation Project aims to address the following two objectives: 1. Identify current innovative practice across the Built Environment industry. 2. Develop a knowledge exchange strategy for this information to be disseminated to all industry stakeholders. Industry practice issues are critical to the built environment industry’s ability to innovate, and the BRITE project from the CRC for Construction Innovation has previously undertaken work to identify the key factors that drive innovation. Part 1 of the current project aims to extend this work by conducting a stocktake of current and emerging innovative practices within the built environment industry. Part 2 of the project addresses the second of these objectives, that is, to recommend a knowledge exchange strategy for promoting the wider uptake of innovative practices that makes the information identified in Part 1 of the study (on emerging innovative practices) accessible to Australian built environment industry stakeholders. The project brief was for the strategy to include a mechanism to enable this information resource to be updated as new initiatives/practices are developed. A better understanding of the built environment industry’s own knowledge infrastructure also has the potential to enhance innovation outcomes for the industry. This project will develop a coordinated knowledge exchange strategy, informed by the best available information on current innovation practices within the industry and suggest directions for gaining a better understanding of: the industry contexts that lead to innovative practices; the industry (including enterprise and individual) drivers for innovation; and appropriate knowledge exchange pathways for delivering future industry innovation. A deliverable of Part 2 will be a recommendation for a knowledge exchange strategy to accelerate adoption of innovative practices in the built environment industry, including resource implications and how such a recommendation could be taken forward as an ongoing resource.
Resumo:
Through a forest inventory in parts of the Amudarya river delta, Central Asia, we assessed the impact of ongoing forest degradation on the emissions of greenhouse gases (GHG) from soils. Interpretation of aerial photographs from 2001, combined with data on forest inventory in 1990 and field survey in 2003 provided comprehensive information about the extent and changes of the natural tugai riparian forests and tree plantations in the delta. The findings show an average annual deforestation rate of almost 1.3% and an even higher rate of land use change from tugai forests to land with only sparse tree cover. These annual rates of deforestation and forest degradation are higher than the global annual forest loss. By 2003, the tugai forest area had drastically decreased to about 60% compared to an inventory in 1990. Significant differences in soil GHG emissions between forest and agricultural land use underscore the impact of the ongoing land use change on the emission of soil-borne GHGs. The conversion of tugai forests into irrigated croplands will release 2.5 t CO2 equivalents per hectare per year due to elevated emissions of N2O and CH4. This demonstrates that the ongoing transformation of tugai forests into agricultural land-use systems did not only lead to a loss of biodiversity and of a unique ecosystem, but substantially impacts the biosphere-atmosphere exchange of GHG and soil C and N turnover processes.
Resumo:
We tested direct and indirect measures of benthic metabolism as indicators of stream ecosystem health across a known agricultural land-use disturbance gradient in southeast Queensland, Australia. Gross primary production (GPP) and respiration (R24) in benthic chambers in cobble and sediment habitats, algal biomass (as chlorophyll a) from cobbles and sediment cores, algal biomass accrual on artificial substrates and stable carbon isotope ratios of aquatic plants and benthic sediments were measured at 53 stream sites, ranging from undisturbed subtropical rainforest to catchments where improved pasture and intensive cropping are major land-uses. Rates of benthic GPP and R24 varied by more than two orders of magnitude across the study gradient. Generalised linear regression modelling explained 80% or more of the variation in these two indicators when sediment and cobble substrate dominated sites were considered separately, and both catchment and reach scale descriptors of the disturbance gradient were important in explaining this variation. Model fits were poor for net daily benthic metabolism (NDM) and production to respiration ratio (P/R). Algal biomass accrual on artificial substrate and stable carbon isotope ratios of aquatic plants and benthic sediment were the best of the indirect indicators, with regression model R2 values of 50% or greater. Model fits were poor for algal biomass on natural substrates for cobble sites and all sites. None of these indirect measures of benthic metabolism was a good surrogate for measured GPP. Direct measures of benthic metabolism, GPP and R24, and several indirect measures were good indicators of stream ecosystem health and are recommended in assessing process-related responses to riparian and catchment land use change and the success of ecosystem rehabilitation actions.