967 resultados para adult human fibroblasts


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to compare the in vitro cytotoxicity of white mineral trioxide aggregate (MTA), MTA Fillapex® and Portland cement (PC) on human cultured periodontal ligament fibroblasts. Periodontal ligament fibroblast culture was established and the cells were used for cytotoxic tests after the fourth passage. Cell density was set at 1.25 X10 4 cells/well in 96-well plates. Endodontic material extracts were prepared by placing sealer/cement specimens (5X3mm) in 1mL of culture medium for 72 h. The extracts were then serially two-fold diluted and inserted into the cell-seeded wells for 24, 48 and 72 h. MTT assay was employed for analysis of cell viability. Cell supernatants were tested for nitric oxide using the Griess reagent system. MTA presented cytotoxic effect in undiluted extracts at 24 and 72 h. MTA Fillapex® presented the highest cytotoxic levels with important cell viability reduction for pure extracts and at ½ and ¼ dilutions. In this study, PC did not induce alterations in fibroblast viability. Nitric oxide was detected in extract-treated cell supernatants and also in the extracts only, suggesting presence of nitrite in the soluble content of the tested materials. In the present study, MTA Fillapex displayed the highest cytotoxic effect on periodontal ligament fibroblasts followed by white MTA and PC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background  Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), infective dermatitis associated with HTLV-1 (IDH), and various other clinical conditions. Several of these diseases can occur in association. Objective  Report an association of diseases related to HTLV-1 infection, occurring in an unusual age group. Methods  Dermatological and laboratory exams were consecutively performed in HTLV-1-infected individuals from January 2008 to July 2010 in the HTLV Outpatient Clinic at the Institute of Infectious Diseases “Emilio Ribas” in São Paulo, Brazil. Results  A total of 193 individuals (73 HAM/TSP and 120 asymptomatic carriers) were evaluated, three of which were associated with adult-onset IDH and HAM/TSP. In all three cases, the patients were affected by IDH after the development and progression of HAM/TSP-associated symptoms. Limitations  Small number of cases because of the rarity of these diseases. Conclusion  We draw attention to the possibility of co-presentation of adult-onset IDH in patients with a previous diagnosis of HAM/TSP, although IDH is a disease classically described in children. Thus, dermatologists should be aware of these diagnoses in areas endemic for HTLV-1 infection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The tumor microenvironment is important for progressive and metastatic disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

HP802-247 is a new-generation, allogeneic tissue engineering product consisting of growth-arrested, human keratinocytes (K) and fibroblasts (F) delivered in a fibrin matrix by a spray device.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Antifibrotic effects of α- (40, 60, 80, 100, and 120 μM), γ- (10, 20, 30, and 40 μM) and δ-tocotrienol (10, 20, 30, and 40 μM) on hTf cultures were evaluated by performing proliferation, migration and collagen synthesis assays. Whereas for vitamin E the exposure time was set to 7 days to mimic subconjunctival application, cultures were exposed only 5 min to mitomycin C 100 μg/ml to mimic intraoperative administration. Cell morphology (phase contrast microscopy) as an assessment for cytotoxicity and cell density by measuring DNA content in a fluorometric assay to determine proliferation inhibition was performed on day 0, 4, and 7. Migration ability and collagen synthesis of fibroblasts were measured. Results All tested tocotrienol isoforms were able to significantly inhibit hTf proliferation in a dose-dependent manner (maximal inhibitory effect without relevant morphological changes at day 4 for α-tocotrienol 80 μM with 36.7% and at day 7 for α-tocotrienol 80 μM with 42.6% compared to control). Degenerative cell changes were observed in cultures with concentrations above 80 μM for α- and above 30 μM for γ- and δ-tocotrienol. The highest collagen synthesis inhibition has been found with 80 µM α-tocotrienol (62.4%) and no significant inhibition for mitomycin C (2.5%). Migration ability was significantly reduced in cultures exposed to 80 µM α- and 30 µM γ-tocotrienol (inhibition of 82.2% and 79.5%, respectively, compared to control) and also after mitomycin C treatment (60.0%). Complete growth inhibition without significant degenerative cell changes could only be achieved with mitomycin C. Conclusion In vitro, all tested tocotrienol isoforms were able to inhibit proliferation, migration and collagen synthesis of human Tenon’s fibroblasts and therefore may have the potential as an anti-scarring agent in filtrating glaucoma surger

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The endometrium contains a distinct population of immune cells that undergo cyclic changes during the menstrual cycle and implantation. The majority of these leucocytes are uterine NK (uNK) cells, however how these cells interact with uterine stromal fibroblasts remains unclear. We therefore investigated the paracrine effect of medium conditioned by uterine decidual leucocytes (which are enriched for uNK cells) on the gene expression profile of endometrial stromal fibroblasts in vitro using a cDNA microarray. Our results, verified by real-time PCR, ELISA and FACS analysis, reveal that soluble factors from uterine leucocytes substantially alter endometrial stromal fibroblast gene expression. The largest group of up-regulated genes found was chemokines and cytokines. These include IL-8, CCL8 and CXCL1, which have also been shown to be stimulated by contact of stromal fibroblasts with trophoblast, suggesting that uNK cells work synergistically to support trophoblast migration during implantation. The decidual leucocytes also up-regulated IL-15 and IL-15Ralpha in stromal fibroblasts which could produce a niche for uNK cells allowing proliferation within and recruitment into the uterus, as seen in bone marrow. Overall this study demonstrates, for the first time, the paracrine communication between uterine leucocytes and uterine stromal fibroblasts, and adds to the understanding of how the uterine immune system contributes to the changes seen within the cycling endometrium.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adipokines, such as nicotinamide phosphoribosyltransferase (NAMPT), are molecules, which are produced in adipose tissue. Recent studies suggest that NAMPT might also be produced in the tooth-supporting tissues, that is, periodontium, which also includes the gingiva. The aim of this study was to examine if and under what conditions NAMPT is produced in gingival fibroblasts and biopsies from healthy and inflamed gingiva. Gingival fibroblasts produced constitutively NAMPT, and this synthesis was significantly increased by interleukin-1β and the oral bacteria P. gingivalis and F. nucleatum. Inhibition of the MEK1/2 and NFκB pathways abrogated the stimulatory effects of F. nucleatum on NAMPT. Furthermore, the expression and protein levels of NAMPT were significantly enhanced in gingival biopsies from patients with periodontitis, a chronic inflammatory infectious disease of the periodontium, as compared to gingiva from periodontally healthy individuals. In summary, the present study provides original evidence that gingival fibroblasts produce NAMPT and that this synthesis is increased under inflammatory and infectious conditions. Local synthesis of NAMPT in the inflamed gingiva may contribute to the enhanced gingival and serum levels of NAMPT, as observed in periodontitis patients. Moreover, local production of NAMPT by gingival fibroblasts may represent a possible mechanism whereby periodontitis may impact on systemic diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Findings from animal and human studies have indicated that an oily calcium hydroxide suspension (OCHS) may improve early wound healing in the treatment of periodontitis. Calcium hydroxide as the main component is well known for its antimicrobial activity, however at present the effect of OCHS on the influence of periodontal wound healing/regeneration is still very limited. The purpose of this in vitro study was to investigate the effect of OCHS on periodontopathogenic bacteria as well as on the attachment and proliferation of osteoblasts and periodontal ligament fibroblasts. METHODS Human alveolar osteoblasts (HAO) and periodontal ligament (PDL) fibroblasts were cultured on 3 concentrations of OCHS (2.5, 5 and 7.5 mg). Adhesion and proliferation were counted up to 48 h and mineralization was assayed after 1 and 2 weeks. Furthermore potential growth inhibitory activity on microorganisms associated with periodontal disease (e.g. Porphyromonas gingivalis, Tannerella forsythia, Aggregatibacter actinomycetemcomitans) as well as the influence of periodontopathogens and OCHS on the HAO and PDL fibroblasts counts were determined. RESULTS More than a 2-fold increase in adherent HAO cells was observed at 4 h following application of OCHS when compared to the control group (p = 0.007 for 2.5 mg). Proliferation of HAO cells at 48 h was stimulated by moderate concentrations (2.5 mg; 5 mg) of OCHS (each p < 0.001), whereas a high concentration (7.5 mg) of OCHS was inhibitory (p = 0.009). Mineralization was observed only for HAO cells treated with OCHS. OCHS did not exert any positive effect on attachment or proliferation of PDL fibroblasts. Although OCHS did not have an antibacterial effect, it did positively influence attachment and proliferation of HAO cells and PDL fibroblasts in the presence of periodontopathogens. CONCLUSIONS The present data suggests that OCHS promotes osteoblast attachment, proliferation and mineralization in a concentration-dependent manner and results are maintained in the presence of periodontal pathogens.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Enhanced activity of receptor tyrosine kinases such as the PDGF β-receptor and EGF receptor has been implicated as a contributing factor in the development of malignant and nonmalignant proliferative diseases such as cancer and atherosclerosis. Several epidemiological studies suggest that green tea may prevent the development of cancer and atherosclerosis. One of the major constituents of green tea is the polyphenol epigallocathechin-3 gallate (EGCG). In an attempt to offer a possible explanation for the anti-cancer and anti-atherosclerotic activity of EGCG, we examined the effect of EGCG on the PDGF-BB–, EGF-, angiotensin II-, and FCS-induced activation of the 44 kDa and 42 kDa mitogen-activated protein (MAP) kinase isoforms (p44mapk/p42mapk) in cultured vascular smooth muscle cells (VSMCs) from rat aorta. VSMCs were treated with EGCG (1–100 μM) for 24 h and stimulated with the above mentioned agonists for different time periods. Stimulation of the p44mapk/p42mapk was detected by the enhanced Western blotting method using phospho-specific MAP kinase antibodies that recognized the Tyr204-phosphorylated (active) isoforms. Treatment of VSMCs with 10 and 50 μM EGCG resulted in an 80% and a complete inhibition of the PDGF-BB–induced activation of MAP kinase isoforms, respectively. In striking contrast, EGCG (1–100 μM) did not influence MAP kinase activation by EGF, angiotensin II, and FCS. Similarly, the maximal effect of PDGF-BB on the c-fos and egr-1 mRNA expression as well as on intracellular free Ca2+ concentration was completely inhibited in EGCG-treated VSMCs, whereas the effect of EGF was not affected. Quantification of the immunoprecipitated tyrosine-phosphorylated PDGF-Rβ, phosphatidylinositol 3′-kinase, and phospholipase C-γ1 by the enhanced Western blotting method revealed that EGCG treatment effectively inhibits tyrosine phosphorylation of these kinases in VSMCs. Furthermore, we show that spheroid formation of human glioblastoma cells (A172) and colony formation of sis-transfected NIH 3T3 cells in semisolid agar are completely inhibited by 20–50 μM EGCG. Our findings demonstrate that EGCG is a selective inhibitor of the tyrosine phosphorylation of PDGF-Rβ and its downstream signaling pathway. The present findings may partly explain the anti-cancer and anti-atherosclerotic activity of green tea.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nerve growth factor (NGF) is a polypeptide which, in addition to its effect on nerve cells, is believed to play a role in inflammatory responses and in tissue repair. Because fibroblasts represent the main target and effector cells in these processes, to investigate whether NGF is involved in lung and skin tissue repair, we studied the effect of NGF on fibroblast migration, proliferation, collagen metabolism, modulation into myofibroblasts, and contraction of collagen gel. Both skin and lung fibroblasts were found to produce NGF and to express tyrosine kinase receptor (trkA) under basal conditions, whereas the low-affinity p75 receptor was expressed only after prolonged NGF exposure. NGF significantly induced skin and lung fibroblast migration in an in vitro model of wounded fibroblast and skin migration in Boyden chambers. Nevertheless NGF did not influence either skin or lung fibroblast proliferation, collagen production, or metalloproteinase production or activation. In contrast, culture of both lung and skin fibroblasts with NGF modulated their phenotype into myofibroblasts. Moreover, addition of NGF to both fibroblast types embedded in collagen gel increased their contraction. Fibrotic human lung or skin tissues displayed immunoreactivity for NGF, trkA, and p75. These data show a direct pro-fibrogenic effect of NGF on skin and lung fibroblasts and therefore indicate a role for NGF in tissue repair and fibrosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Marrow stromal cells are adult stem cells from bone marrow that can differentiate into multiple nonhematopoietic cell lineages. Previous reports demonstrated that single-cell-derived colonies of marrow stromal cells contained two morphologically distinct cell types: spindle-shaped cells and large flat cells. Here we found that early colonies also contain a third kind of cell: very small round cells that rapidly self-renew. Samples enriched for the small cells had a greater potential for multipotential differentiation than samples enriched for the large cells. Also, the small cells expressed a series of surface epitopes and other proteins that potentially can be used to distinguish the small cells from the large cells. The results suggested it will be important to distinguish the major subpopulations of marrow stromal cells in defining their biology and their potential for cell and gene therapy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Globin genes are subject to tissue-specific and developmental stage-specific regulation. A switch from human fetal (gamma)-to adult (beta)-globin expression occurs within erythroid precursor cells of the adult lineage. Previously we and others showed by targeted gene disruption that the zinc finger gene, erythroid Krüppel-like factor (EKLF), is required for expression of the beta-globin gene in mice, presumably through interaction with a high-affinity binding site in the proximal promoter. To examine the role of EKLF in the developmental regulation of the human gamma-globin gene we interbred EKLF heterozygotes (+/-) with mice harboring a human beta-globin yeast artificial chromosome transgene. We find that in the absence of EKLF, while human beta-globin expression is dramatically reduced, gamma-globin transcripts are elevated approximately 5-fold. Impaired silencing of gamma-globin expression identifies EKLF as the first transcription factor participating quantitatively in the gamma-globin to beta-globin switch. Our findings are compatible with a competitive model of switching in which EKLF mediates an adult stage-specific interaction between the beta-globin gene promoter and the locus control region that excludes the gamma-globin gene.