1000 resultados para adsorção foliar
Resumo:
The adsorption capacity of alpha-chitosan and its modified form with succinic anhydride was compared with the traditional adsorbent active carbon by using the dye methylene blue, employed in the textile industry. The isotherms for both biopolymers were classified as SSA systems in the Giles model, more specifically in L class and subgroup 3. The dye concentration in the supernatant in the adsorption assay was determined through electronic spectroscopy. By calorimetric titration thermodynamic data of the interaction between methyene blue and the chemically modified chitosan at the solid/liquid interface were obtained. The enthalpy of the dye/chitosan interaction gave 2.47 ± 0.02 kJ mol-1 with an equilibrium constant of 7350 ± 10 and for the carbon/dye interaction this constant gave 5951 ± 8. The spontaneity of these adsorptions are reflected by the free Gibbs energies of -22.1 ± 0.4 and -21.5 ± 0.2 kJ mol-1, respectively, found for these systems. This new adsorbent derived from a natural polysaccharide is as efficient as activated carbon. However 97% of the bonded dye can be eluted by sodium chloride solution, while this same operation elutes only 42% from carbon. Chitosan is efficient in dye removal with the additional advantage of being cheap, non-toxic, biocompatible and biodegradable.
Resumo:
Minerals adsorb more readily amino acids with charged R groups than those with uncharged R groups, so that the incorporation of amino acids with charged R groups into peptides would be more frequent than that of amino acids with uncharged R groups. However, 74% of the amino acids in the proteins of modern organisms contain uncharged R groups. Thus, what could have been the mechanism that produced peptides/proteins with more amino acids with uncharged R groups than precursors with charged R groups? The lipid world offers an alternative view of the origin of life. In the present paper, several other mechanisms are also discussed.
Resumo:
Evergreen trees in the Mediterranean region must cope with a wide range of environmental stresses from summer drought to winter cold. The mildness of Mediterranean winters can periodically lead to favourable environmental conditions above the threshold for a positive carbon balance, benefitting evergreen woody species more than deciduous ones. The comparatively lower solar energy input in winter decreases the foliar light saturation point. This leads to a higher susceptibility to photoinhibitory stress especially when chilly (< 12 C) or freezing temperatures (< 0 C) coincide with clear skies and relatively high solar irradiances. Nonetheless, the advantage of evergreen species that are able to photosynthesize all year round where a significant fraction can be attributed to winter months, compensates for the lower carbon uptake during spring and summer in comparison to deciduous species. We investigated the ecophysiological behaviour of three co-occurring mature evergreen tree species (Quercus ilex L., Pinus halepensis Mill., and Arbutus unedo L.). Therefore, we collected twigs from the field during a period of mild winter conditions and after a sudden cold period. After both periods, the state of the photosynthetic machinery was tested in the laboratory by estimating the foliar photosynthetic potential with CO2 response curves in parallel with chlorophyll fluorescence measurements. The studied evergreen tree species benefited strongly from mild winter conditions by exhibiting extraordinarily high photosynthetic potentials. A sudden period of frost, however, negatively affected the photosynthetic apparatus, leading to significant decreases in key physiological parameters such as the maximum carboxylation velocity (Vc,max), the maximum photosynthetic electron transport rate (Jmax), and the optimal fluorometric quantum yield of photosystem II (Fv/Fm). The responses of Vc,max and Jmax were highly species specific, with Q. ilex exhibiting the highest and P. halepensis the lowest reductions. In contrast, the optimal fluorometric quantum yield of photosystem II (Fv/Fm) was significantly lower in A. unedo after the cold period. The leaf position played an important role in Q. ilex showing a stronger winter effect on sunlit leaves in comparison to shaded leaves. Our results generally agreed with the previous classifications of photoinhibition-tolerant (P. halepensis) and photoinhibitionavoiding (Q. ilex) species on the basis of their susceptibility to dynamic photoinhibition, whereas A. unedo was the least tolerant to photoinhibition, which was chronic in this species. Q. ilex and P. halepensis seem to follow contrasting photoprotective strategies. However, they seemed equally successful under the prevailing conditions exhibiting an adaptive advantage over A. unedo. These results show that our understanding of the dynamics of interspecific competition in Mediterranean ecosystems requires consideration of the physiological behaviour during winter which may have important implications for long-term carbon budgets and growth trends.
Resumo:
Glyphosate, an enzyme inhibitor herbicide, has been widely used around the world in agriculture. Dr. John Franz from Monsanto Corporation (USA) discovered glyphosate in 1970. It has been showed that glyphosate is strongly adsorbed by inorganic soil components especially aluminium and iron oxides, and the phosphate group is involved in this interaction. The inactivation of glyphosate in soils can last for days or even months depending on soil characteristics. The addition of phosphate from fertilizers can displace glyphosate from the soils and this could be the cause of decreased productivity of some crops.
Resumo:
The present study describes phenol adsorption on commercial active carbon (CAF) under alkaline conditions in the concentration range of 0.01 to 2.08 mmol L-1. Surface characterization has been performed by means of surface area measurements, IR spectroscopy and Boehm titration. The effect of temperature on the adsorption equilibrium isotherm was investigated at 23, 30, 40, 50 and 60 °C. The results showed that adsorption capacity decreased with increasing temperature. The adsorption kinetics and the role of surface characteristics on the adsorption of phenol also discussed.
Resumo:
Removal of hydrocarbons from aqueous effluents using biosorbents was investigated. The effluent was simulated by a dispersion of gasoline (simple hydrocarbons) in water. Corn-cob, wood powder, coconut mesocarp and sugar-cane bagasse were used as adsorbents and their performance verified by means of batch experiments performed in an agitated vessel. The influence of input variables such as hydrocarbon concentration, mass of biomass and agitation level on the adsorbents' capacity was studied by means of factorial design. The results indicated that, among the materials studied, coconut mesocarp and sugar-cane bagasse can be considered promising biomasses for treating aqueous effluents contaminated by hydrocarbons.
Resumo:
The adsorption of Cu(II) ions from aqueous solution by chitosan using a column in a closed hydrodynamic flow system is described. The adsorption capacities as a function of contact time of copper(II) ions and chitosan were determined by varying the ionic strength, temperature and the flow of the metal solution. The Langmuir model reproduced the adsorption isothermal data better than the Freundlich model. The experimental kinetic data correlate properly with the second-order kinetic reaction for the whole set of experimental adsorption conditions. The rate constants exercise great influence on the time taken for equilibrium to be established by complexation or electrostatic interaction between the amino groups of chitosan and the metal.
Resumo:
Polysaccharide-based drilling fluids have been often applied in horizontal wells of petroleum reservoirs in Campos, Rio de Janeiro. The present study aimed to understand the mechanism of adsorption and desorption of the drill-in fluid, xanthan, modified starch and lubricant on SiO2 by means of ellipsometry. The effect of pH and brine on the mean thickness (D) of adsorbed layer was systematically investigated. The adsorption was mainly favored under alkaline conditions. A model has been proposed to explain this effect. The adsorption isotherms determined separately for xanthan and starch on SiO2 surfaces could be fitted with the Langmuir model, which yielded similar adsorption constant values.
Resumo:
This paper describes the adsorption of an oligothymidylate (pdT16) on nanoemulsions obtained by spontaneous emulsification procedures. Formulations were composed by medium chain triglycerides, egg lecithin, glycerol, water (NE) and stearylamine (NE SA). After optimization of operating conditions, the mean droplet size was smaller than 255 nm. Adsorption isotherms showed a higher amount of pdT16 adsorbed on cationic NE SA (60 mg/g) compared to NE (20 mg/g). pdT16 adsorption was also evidenced by the inversion of the zeta-potential of NE SA (from +50 to -30 mV) and the morphology of oil droplets examined through transmission electron microscopy. The overall results showed the role of electrostatic interactions on the adsorption of pdT16 on the oil/water interface of nanoemulsions.
Resumo:
The aim of this investigation is to study how Zr/Ti-PILC adsorbs metals. The physico-chemical proprieties of Zr/Ti-PILC have been optimized with pillarization processes and Cu(II), Ni(II) and Co(II) adsorption from aqueous solution has been carried out, with maximum adsorption values of 8.85, 8.30 and 7.78 x10-1 mmol g-1, respectively. The Langmuir, Freundlich and Temkin adsorption isotherm models have been applied to fit the experimental data with a linear regression process. The energetic effect caused by metal interaction was determined through calorimetric titration at the solid-liquid interface and gave a net thermal effect that enabled the calculation of the exothermic values and the equilibrium constant.
Resumo:
The aim of this work is to evaluate the use of natural zeolites to remove the NH4+ that remains in effluents from swine facilities which were submitted to physico-chemical and biological treatments. Experiments were made in batch made adding 5% (w/w) of adsorbent (0.6-1.3 and 3.0-8.0 mm) to synthetic and real swine facilities effluents. The results show that ammonium removal is influenced by adsorbent particle size and the presence of other ions in the effluent. The adsorption equilibrium was described by Langmuir as well as Freundlich isotherms and the kinetic data fitted well a pseudo-second order model.
Resumo:
This work describes the use of clinoptilolite for removal of ammonium ions present in waters produced at the Campos' Basin. Samples were previously treated in order to remove organic compounds and metals. Experiments were run in fixed- and fluidized-bed systems, at room temperature. The fluidized-bed systems did not remove efficiently the ammonium ion. The best operational conditions were obtained with clinoptilolite particle size in the range 0.30-0.50 mm, under ascendant flow (3 mL min-1), in a fixed-bed system. The best zeolite performance was found when it was pretreated with 0.5 mol L-1 NaOH. Na+ was the most important interfering ion due to its high concentration in the water. Clinoptilolite lost partially its capacity to retain ammonium ions after several regeneration cycles with NaOH.
Resumo:
The removal of As(V) by a crosslinked iron(III)-chitosan adsorbent was evaluated under various conditions. The adsorption capacity of CH-FeCL was around 54 mg/g of As(V). The kinetics of adsorption obeys a pseudo-first-order model with rate constants equal to 0.022, 0.028, and 0.033 min-1 at 15, 25 and 35 ºC respectively. Adsorption data were well described by the Langmuir model, although they could be modeled also by the Langmuir-Freundlich equation. The maximum adsorption capacity, calculated with the Langmuir model, was 127 mg g-1 of As(V). The inhibition by competing anions is dependant on their kind and valence.
Resumo:
This work describes the study the adsorption of a cationic surfactant, cetyl trimethyl ammonium bromide (CTAB) in the hydrous niobium phosphate matrix. The matrix was characterized by powder X-ray diffraction (DRX), thermal analysis (TG), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and surface area measurements (BET). The Langmuir and Freundlich isothermal models were used in the CTAB adsorption study. The adsorption process wasn`t favorable for the NbOPO4.nH2O in both studied models.
Resumo:
Desulphurization process by adsorption was studied employing a commercial diesel dooped with 1000 mg/L of benzothiophene and dibenzothiophene. The adsorbents materials employed were three types of activated alumina (acid, basic and neutral). For comparison, adsorption process was made also using oxidized diesel sample. The results showed that the adsorbents were selective for sulphur compounds removal from fuels. The contact time have influence in adsorption process achieving 80% of removal for not oxidized dibenzothiophene. The three studied alumina types showed similar behavior and a greater selective in dibenzothiophene adsorption than benzothiophene. Dibenzothiophene removal is more effective in samples not oxidized, whereas the benzothiophene was almost totally removed in oxidized sample.