323 resultados para ZWITTERIONIC DETERGENTS
Resumo:
Activation of human platelets with thrombin transiently increases phosphorylation at 558threonine of moesin as determined with phosphorylation state-specific antibodies. This specific modification is completely inhibited by the kinase inhibitor staurosporine and maximally promoted by the phosphatase inhibitor calyculin A, making it possible to purify the two forms of moesin to homogeneity. Blot overlay assays with F-actin probes labeled with either [32P]ATP or 125I show that only phosphorylated moesin interacts with F-actin in total platelet lysates, in moesin antibody immunoprecipitates, and when purified. In the absence of detergents, both forms of the isolated protein are aggregated. Phosphorylated, purified moesin co-sediments with α- or β/γ-actin filaments in cationic, but not in anionic, nonionic, or amphoteric detergents. The interaction affinity is high (Kd, ∼1.5 nM), and the maximal moesin:actin stoichiometry is 1:1. This interaction is also observed in platelets extracted with cationic but not with nonionic detergents. In 0.1% Triton X-100, F-actin interacts with phosphorylated moesin only in the presence of polyphosphatidylinositides. Thus, both polyphosphatidylinositides and phosphorylation can activate moesin’s high-affinity F-actin binding site in vitro. Dual regulation by both mechanisms may be important for proper cellular control of moesin-mediated linkages between the actin cytoskeleton and the plasma membrane.
Resumo:
Here we describe an association between α3β1 integrin and transmembrane-4 superfamily (TM4SF) protein CD151. This association is maintained in relatively stringent detergents and thus is remarkably stable in comparison with previously reported integrin–TM4SF protein associations. Also, the association is highly specific (i.e., observed in vitro in absence of any other cell surface proteins), and highly stoichiometric (nearly 90% of α3β1 associated with CD151). In addition, α3β1 and CD151 appeared in parallel on many cell lines and showed nearly identical skin staining patterns. Compared with other integrins, α3β1 exhibited a considerably higher level of associated phosphatidylinositol-4-kinase (PtdIns 4-kinase) activity, most of which was removed upon immunodepletion of CD151. Specificity for CD151 and PtdIns 4-kinase association resided in the extracellular domain of α3β1, thus establishing a novel paradigm for the specific recruitment of an intracellular signaling molecule. Finally, antibodies to either CD151 or α3β1 caused a ∼88–92% reduction in neutrophil motility in response to f-Met-Leu-Phe on fibronectin, suggesting an functionally important role of these complexes in cell migration.
Resumo:
Results of transgenetic studies argue that the scrapie isoform of the prion protein (PrPSc) interacts with the substrate cellular PrP (PrPC) during conversion into nascent PrPSc. While PrPSc appears to accumulate primarily in lysosomes, caveolae-like domains (CLDs) have been suggested to be the site where PrPC is converted into PrPSc. We report herein that CLDs isolated from scrapie-infected neuroblastoma (ScN2a) cells contain PrPC and PrPSc. After lysis of ScN2a cells in ice-cold Triton X-100, both PrP isoforms and an N-terminally truncated form of PrPC (PrPC-II) were found concentrated in detergent-insoluble complexes resembling CLDs that were isolated by flotation in sucrose gradients. Similar results were obtained when CLDs were purified from plasma membranes by sonication and gradient centrifugation; with this procedure no detergents are used, which minimizes artifacts that might arise from redistribution of proteins among subcellular fractions. The caveolar markers ganglioside GM1 and H-ras were found concentrated in the CLD fractions. When plasma membrane proteins were labeled with the impermeant reagent sulfo-N-hydroxysuccinimide-biotin, both PrPC and PrPSc were found biotinylated in CLD fractions. Similar results on the colocalization of PrPC and PrPSc were obtained when CLDs were isolated from Syrian hamster brains. Our findings demonstrate that both PrPC and PrPSc are present in CLDs and, thus, support the hypothesis that the PrPSc formation occurs within this subcellular compartment.
Resumo:
Recent experiments on various similar green fluorescent protein (GFP) mutants at the single-molecule level and in solution provide evidence of previously unknown short- and long-lived “dark” states and of related excited-state decay channels. Here, we present quantum chemical calculations on cis-trans photoisomerization paths of neutral, anionic, and zwitterionic GFP chromophores in their ground and first singlet excited states that explain the observed behaviors from a common perspective. The results suggest that favorable radiationless decay channels can exist for the different protonation states along these isomerizations, which apparently proceed via conical intersections. These channels are suggested to rationalize the observed dramatic reduction of fluorescence in solution. The observed single-molecule fast blinking is attributed to conversions between the fluorescent anionic and the dark zwitterionic forms whereas slow switching is attributed to conversions between the anionic and the neutral forms. The predicted nonadiabatic crossings are seen to rationalize the origins of a variety of experimental observations on a common basis and may have broad implications for photobiophysical mechanisms in GFP.
Resumo:
The transmembrane transcriptional activators ToxR and TcpP modulate expression of Vibrio cholerae virulence factors by exerting control over toxT, which encodes the cytoplasmic transcriptional activator of the ctx, tcp, and acf virulence genes. However, ToxR, independently of TcpP and ToxT, activates and represses transcription of the genes encoding two outer-membrane porins, OmpU and OmpT. To determine the role of ToxR-dependent porin regulation in V. cholerae pathogenesis, the ToxR-activated ompU promoter was used to drive ompT transcription in a strain lacking OmpU. Likewise, the ToxR-repressed ompT promoter was used to drive ompU transcription in a strain lacking both ToxR and OmpT. This strategy allowed the generation of a toxR+ strain that expresses OmpT in place of OmpU, and a toxR− strain that expresses OmpU in place of OmpT. Growth rates in the presence of bile salts and other anionic detergents were retarded for the toxR+ V. cholerae expressing OmpT in place of OmpU, but increased in toxR− V. cholerae expressing OmpU in place of OmpT. Additionally, the toxR+ V. cholerae expressing OmpT in place of OmpU expressed less cholera toxin and toxin-coregulated pilus, and this effect was shown to be caused by reduced toxT transcription in this strain. Finally, the toxR+ V. cholerae expressing OmpT in place of OmpU was ≈100-fold reduced in its ability to colonize the infant-mouse intestine. Our results indicate that ToxR-dependent modulation of the outer membrane porins OmpU and OmpT is critical for V. cholerae bile resistance, virulence factor expression, and intestinal colonization.
Resumo:
2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible cleavage of KDPG to pyruvate and glyceraldehyde-3-phosphate. The enzyme is a class I aldolase whose reaction mechanism involves formation of Schiff base intermediates between Lys-133 and a keto substrate. A covalent adduct was trapped by flash freezing KDPG aldolase crystals soaked with 10 mM pyruvate in acidic conditions at pH 4.6. Structure determination to 1.95-Å resolution showed that pyruvate had undergone nucleophilic attack with Lys-133, forming a protonated carbinolamine intermediate, a functional Schiff base precursor, which was stabilized by hydrogen bonding with active site residues. Carbinolamine interaction with Glu-45 indicates general base catalysis of several rate steps. Stereospecific addition is ensured by aromatic interaction of Phe-135 with the pyruvate methyl group. In the native structure, Lys-133 donates all of its hydrogen bonds, indicating the presence of an ɛ-ammonium salt group. Nucleophilic activation is postulated to occur by proton transfer in the monoprotonated zwitterionic pair (Glu-45/Lys-133). Formation of the zwitterionic pair requires prior side chain rearrangement by protonated Lys-133 to displace a water molecule, hydrogen bonded to the zwitterionic residues.
Resumo:
Use of synthetic zeolites and other microporous oxides since 1950 has improved insulated windows, automobile air-conditioning, refrigerators, air brakes on trucks, laundry detergents, etc. Their large internal pore volumes, molecular-size pores, regularity of crystal structures, and the diverse framework chemical compositions allow “tailoring” of structure and properties. Thus, highly active and selective catalysts as well as adsorbents and ion exchangers with high capacities and selectivities were developed. In the petroleum refining and petrochemical industries, zeolites have made possible cheaper and lead-free gasoline, higher performance and lower-cost synthetic fibers and plastics, and many improvements in process efficiency and quality and in performance. Zeolites also help protect the environment by improving energy efficiency, reducing automobile exhaust and other emissions, cleaning up hazardous wastes (including the Three Mile Island nuclear power plant and other radioactive wastes), and, as specially tailored desiccants, facilitating the substitution of new refrigerants for the ozone-depleting chlorofluorocarbons banned by the Montreal Protocol.
Resumo:
Different approaches were utilized to investigate the mechanism by which fusicoccin (FC) induces the activation of the H+-ATPase in plasma membrane (PM) isolated from radish (Raphanus sativus L.) seedlings treated in vivo with (FC-PM) or without (C-PM) FC. Treatment of FC-PM with different detergents indicated that PM H+-ATPase and the FC-FC-binding-protein (FCBP) complex were solubilized to a similar extent. Fractionation of solubilized FC-PM proteins by a linear sucrose-density gradient showed that the two proteins comigrated and that PM H+-ATPase retained the activated state induced by FC. Solubilized PM proteins were also fractionated by a fast-protein liquid chromatography anion-exchange column. Comparison between C-PM and FC-PM indicated that in vivo treatment of the seedlings with FC caused different elution profiles; PM H+-ATPase from FC-PM was only partially separated from the FC-FCBP complex and eluted at a higher NaCl concentration than did PM H+-ATPase from C-PM. Western analysis of fast-protein liquid chromatography fractions probed with an anti-N terminus PM H+-ATPase antiserum and with an anti-14–3-3 antiserum indicated an FC-induced association of FCBP with the PM H+-ATPase. Analysis of the activation state of PM H+-ATPase in fractions in which the enzyme was partially separated from FCBP suggested that the establishment of an association between the two proteins was necessary to maintain the FC-induced activation of the enzyme.
Resumo:
Rhodopsin is the G protein-coupled receptor that upon light activation triggers the visual transduction cascade. Rod cell outer segment disc membranes were isolated from dark-adapted frog retinas and were extracted with Tween detergents to obtain two-dimensional rhodopsin crystals for electron crystallography. When Tween 80 was used, tubular structures with a p2 lattice (a = 32 A, b = 83 A, gamma = 91 degrees) were formed. The use of a Tween 80/Tween 20 mixture favored the formation of larger p22(1)2(1) lattices (a = 40 A, b = 146 A, gamma = 90 degrees). Micrographs from frozen hydrated frog rhodopsin crystals were processed, and projection structures to 7-A resolution for the p22(1)2(1) form and to 6-A resolution for the p2 form were calculated. The maps of frog rhodopsin in both crystal forms are very similar to the 9-A map obtained previously for bovine rhodopsin and show that the arrangement of the helices is the same. In a tentative topographic model, helices 4, 6, and 7 are nearly perpendicular to the plane of the membrane. In the higher-resolution projection maps of frog rhodopsin, helix 5 looks more tilted than it appeared previously. The quality of the two frog rhodopsin crystals suggests that they would be suitable to obtain a three-dimensional structure in which all helices would be resolved.
Resumo:
Current methods for purifying caveolae from tissue culture cells take advantage of the Triton X-100 insolubility of this membrane domain. To circumvent the use of detergents, we have developed a method that depends upon the unique buoyant density of caveolae membrane. The caveolae fractions that we obtain are highly enriched in caveolin. As a consequence we are able to identify caveolae-associated proteins that had previously gone undetected. Moreover, resident caveolae proteins that are soluble in Triton X-100 are retained during the isolation.
Resumo:
It is known that the phospholipids of the brain cells of fish are altered during cold adaptation. In particular, the 1-monounsaturated 2-polyunsaturated phosphatidylethanolamines (PEs) increase 2- to 3-fold upon adaptation to cold. One of the most striking changes is in the 18:1/22:6 species of PE. We determined how this lipid affected the bilayer-to-hexagonal-phase transition temperature of 16:1/16:1 PE. We found that it was more effective in lowering this transition temperature than were other, less unsaturated, PE species. In addition, it was not simply the presence of the 18:1/22:6 acyl chains which caused this effect, since the 18:1/22:6 species of phosphatidylcholine had the opposite effect on this transition temperature. Zwitterionic substances that lower the bilayer-to-hexagonal-phase transition temperature often cause an increase in the activity of protein kinase C (PKC). Indeed, the 18:1/22:6 PE caused an increase in the rate of histone phosphorylation by PKC which was greater than that caused by other, less unsaturated, PEs. The 18:1/22:6 phosphatidylcholine had no effect on this enzyme. The stimulation of the activity of PKC by the 18:1/22:6 PE is a consequence of this lipid's increasing the partitioning of PKC to the membrane.
Resumo:
The hepatitis C virus RNA genome encodes a long polyprotein that is proteolytically processed into at least 10 products. The order of these cleavage products in the polyprotein is NH2-C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B -COOH. A serine proteinase domain located in the N-terminal one-third of nonstructural protein NS3 mediates cleavage at four downstream sites (the 3/4A, 4A/4B, 4B/5A, and 5A/5B sites). In addition to the proteinase catalytic domain, the NS4A protein is required for processing at the 4B/5A site but not at the 5A/5B site. These cleavage events are likely to be essential for virus replication, making the serine proteinase an attractive antiviral target. Here we describe an in vitro assay where the NS3-4A polyprotein, NS3, the serine proteinase domain (the N-terminal 181 residues of NS3), and the NS4A cofactor were produced by cell-free translation and tested for trans-processing of radiolabeled substrates. Polyprotein substrates, NS4A-4B or truncated NS5A-5B, were cleaved in trans by all forms of the proteinase, whereas NS4A was also required for NS4B-5A processing. Proteolysis was abolished by substitution mutations previously shown to inactivate the proteinase or block cleavage at specific sites in vivo. Furthermore, N-terminal sequence analysis established that cleavage in vitro occurred at the authentic 4A/4B site. Translation in the presence of microsomal membranes enhanced processing for some, but not all, proteinase-substrate combinations. Trans-processing was both time and temperature dependent and was eliminated by treatment with a variety of detergents above their critical micelle concentrations. Among many common proteinase inhibitors tested, only high (millimolar) concentrations of serine proteinase inhibitors tosyllysyl chloromethyl ketone and 4-(2-aminoethyl)benzenesulfonyl fluoride inactivated the NS3 proteinase. This in vitro assay should facilitate purification and further characterization of the viral serine proteinase and identification of molecules which selectively inhibit its activity.
Resumo:
The alpha-crystallin-related heat shock proteins are produced by all eukaryotes, but the role of these proteins in thermoprotection remains unclear. To investigate the function of one of these proteins, we disrupted expression of the single-copy hsp30 gene of Neurospora crassa, using repeat-induced point mutagenesis, and we generated and characterized mutant strains that were deficient in hsp30 synthesis. These strains could grow at high temperature and they acquired thermotolerance from a heat shock. However, the hsp30-defective strains proved to be extremely sensitive to the combined stresses of high temperature and carbohydrate limitation, enforced by the addition of a nonmetabolizable glucose analogue. Under these conditions, their survival was reduced by 90% compared with wild-type cells. This sensitive phenotype was reversed by reintroduction of a functional hsp30 gene into the mutant strains. The mutant cells contained mitochondria from which a 22-kDa protein was readily extracted with detergents, in contrast to its retention by the mitochondria of wild-type cells. Antibodies against hsp30 coimmunoprecipitated a protein also of approximately 22 kDa from wild-type cells. Results of this study suggest that hsp30 may be important for efficient carbohydrate utilization during high temperature stress and that it may interact with other mitochondrial membrane proteins and function as a protein chaperone.
Resumo:
The lubricants are normally composed by base oils and a number of additives which are added to improve the performances of the final product. In this work, which is due to the collaboration between ENI S.p.A. and Prof. Casnati’s group, significant results in the application of calixarene structures to two classes of lubricant additives (viscosity index improvers and detergents) were shown. In particular, several calix[8]arene derivatives were synthesized to use as core precursors in the “arm-first" synthetic processes of star polymers for viscosity index improver applications. The use of calixarene derivatives enable the production of star polymers with a high and well-defined number of branches and endowed with a very low dispersivity of molecular weight which can originate better performances than the current commercially available viscosity index improvers of the major competitor. Several functional groups were considered to prepare reactive p-tert-butylcalix[8]arene cores to be used in living anionic polymerization. n-butyllithium was used as model of the living anionic polymer to test the outcome of the reaction of polymer insertion on the calixarene core, facilitating the analyses of the products. The calixarene derivative, which easier reacts with n-BuLi, was selected for the preparation of star polymers by using a isoprene/styrene living anionic polymer. Finally, the lubricant formulations, which include the calixarene-based star polymers or commercially available products as viscosity index improvers, were prepared and comparatively tested. In the last part of Thesis, the use of calixarenes as polycarboxylic acids to synthetize new sulfur-free detergents as lubricant additives was carried out. In this way, these calcium-based detergents can be used for the formulation of new automotive lubricants with low content of ash, phosphorus and sulfur (low SAPS). To increase the low deprotonation degree of OH groups and their capacity to complex calcium ions, a complete functionalization of the calixarene mixtures with acetic acid groups was required. Futhermore, the “one-step” synthesis of new calixarenes with alkyl chains in para positions longer than the ones already known was necessary to improve the oil solubility and stability of reverse micelles formed by the detergents. Moreover, the separation and characterization of the calixarenes were carried out to optimize their synthetic process, also on pilot scale. For our purpose, the use of p-tert-octylcalixarenes for the preparation of detergents was carried out to compare the properties of the final detergents respect to the use of the p-dodecyl calixarenes. Once achieved the functionalization of both calixarene mixtures with carboxylic acid groups, the syntheses of new calixarene-based detergents were carried out to identify the best calixarene derivative for our research goals. The synthetic process for the preparation of calixarene-based detergent having very high basicity (TBN 400) was also investigated for applications in lubricants for marine engines. In addition, with the aim of testing the calixarene-based detergents in automotive lubricants, several additive packages (concentrated mixture of additives) containing our detergents were prepared. Using these packages the corresponding automotive lubricants can be formulated. Besides, a lubricant containing commercial calcium alkylbenzene-sulfonates detergents was prepared to compare its detergency properties with those of the calixarene-based oils.
Resumo:
A bioengenharia de tecidos baseia-se no uso de moléculas bioativas, células-tronco e biomateriais para reparação de tecidos e/ou órgãos. Biomateriais podem ser classificados de acordo com sua origem em sintéticos ou biológicos. Biomateriais biológicos podem ser produzidos por decelularização, que visa a remoção de células da matriz extracelular (MEC), a qual deve manter sua integridade química e física. Placentas são órgãos de grande interesse na bioengenharia de tecidos visto que são descartadas após o parto e possuem grande volume de matriz extracelular. Métodos de decelularização podem ser classificados em químicos, físicos e enzimáticos. Todos conhecidamente causam alterações na MEC, sendo que a associação deles é comumente utilizada. Este trabalho comparou diferentes protocolos e estabeleceu um método mais favorável para a decelularização de placentas caninas, visando a produção de um biomaterial para futuras aplicações clínicas. Inicialmente ambas as porções - materna e fetal - das placentas foram submetidas à 10 protocolos, que avaliaram variáveis como concentração e tempo de incubação em detergentes, diferentes gradientes de temperatura e a influência da perfusão versus imersão das soluções, na MEC remanescente. Com base na transparência do tecido e na ausência de núcleo celular em cortes histológicos, dois protocolos foram selecionados (I e II). Além dos critérios já mencionados, ambos os protocolos foram comparados quanto à quantidade de DNA remanescente na MEC decelularizada e à permanência e distribuição de algumas das proteínas da matriz. O detergente SDS foi o mais eficaz na remoção de células, embora não tenha sido suficiente para promover uma decelularização tecidual completa. O congelamento prévio das placentas requereu um maior tempo de incubação posterior das amostras nos distintos detergentes. Ambos métodos de perfusão e imersão foram eficazes na remoção das células, embora grande concentração de proteínas do citoesqueleto tenham permanecido retidas na matriz. As amostras processadas pelo protocolo I (SDS 1%, 5mM EDTA + 50mM TRIS + 0,5% antibiótico, e Triton X-100 1%) apresentaram maior preservação da organização estrutural da MEC quando comparadas àquelas processadas de acordo com o protocolo II (que diferiu do anterior pela utilização de solução contendo 0,05% tripsina ao invés de 50mM TRIS), esse último método entretanto foi o que melhor removeu as células das placentas, conforme observado em lâminas histológicas e demonstrado pela menor concentração de DNA. Tanto as porções materna quanto fetal submetidas à ambos protocolos, mantiveram as proteínas laminina, fibronectina e colágeno tipo I. O colágeno tipo III foi observado somente na porção fetal. Conclui-se que o protocolo II foi o mais eficaz no processo de decelularização de placentas caninas tendo promovido a remoção do conteúdo celular e diminuição da concentração de DNA na MEC remanescente. No entanto é necessário otimizar o tempo de incubação das placentas em soluções enzimáticas visando maior conservação do arranjo da matriz decelularizada. A análise da capacidade da MEC decelularizada por tal método para ser utilizada em bioengenharia de tecidos ainda deve ser avaliada in vitro e in vivo