973 resultados para YELLOW FEVER VIRUS
Resumo:
After the bite of an infected mosquito, onset of illness occurs usually between 4 and 8 days, but can range from 2 to 12 days. Chikungunya is characterized by an abrupt onset of fever frequently accompanied by joint pain. Other common signs and symptoms include muscle pain, headache, nausea, fatigue and rash. The joint pain is often very debilitating, but usually lasts for a few days or may be prolonged to weeks. Hence the virus can cause acute, subacute, or chronic disease. Most patients recover fully, but in some cases joint pain may persist for several months, or even years. Occasional cases of eye, neurological, and heart complications have been reported, as well as gastrointestinal complaints. Serious complications are not common, but in older people, the disease can contribute to the cause of death. Often symptoms in infected individuals are mild and the infection may go unrecognized, or be misdiagnosed in areas where dengue occurs. Co-infections of dengue and chikungunya can occur.
Resumo:
Malignant Catarrhal Fever (MCF), an often-lethal infectious disease, presents as a variable complex of lesions in susceptible ungulate species. The disease is caused by a -herpesvirus following transmission from an inapparent carrier host. Two major epidemiological forms exist: wildebeest-associated MCF (WA-MCF), in which the virus is transmitted to susceptible species by wildebeest calves less than approximately four months of age, and sheepassociated MCF (SA-MCF) in which the virus is spread by sheep (primarily adolescents). Due to the lack of an in-vitro propagation system for the causative agent of the more economically significant SA-MCF, and with the expectation that cross-protective immunity may be provided, vaccine development has focused on the more easily propagated alcelaphine herpesvirus-1 (AlHV-1) that causes WA-MCF. In 2008 a direct viral challenge trial showed that a novel vaccine, employing an attenuated AlHV-1 (atAlHV-1) `C5000 virus strain, protected British Friesian-Holstein (FH) cattle against an intranasal challenge with virulent AlHV-1 `C5000 virus. For cattle keeping people living near wildebeest calving areas in sub-Saharan Africa an effective vaccine would have value as it would release them from the costly annual disease avoidance strategy of having to move their herds away from the oncoming wildebeest. On the other hand, an effective vaccine will release herd owners from the need to avoid MCF, allowing them to graze their cattle alongside wildebeest on the highly nutritious pastures of the calving areas. As such conservationists have raised concerns that the development of a vaccine might lead to detrimental grazing competition. The principle objective of this study was to test the novel vaccine on Tanzanian shorthorn zebu cross cattle (SZC).We did this firstly using a natural challenge field trial (Chapter Two) which demonstrated that immunisation with the atAlHV-1 vaccine was well tolerated and induced an oro-nasopharyngeal AlHV-1-specific and -neutralising antibody response. This resulted in an immunity in SZC cattle that was partially protective and reduced naturally transmitted infection by 56%. We also demonstrated that non-fatal infections occurred with a much higher frequency than previously thought. Because the calculated efficacy of the vaccine was less than that seen in British FH cattle we wanted to determine whether host factors, particular to SZC cattle, had impacted the outcomes of the field trial. To do this we repeated the 2008 direct viral challenge trial using SZC cattle (Chapter Four). During this trial we also investigated whether the recombinant bacterial flagellin monomer (FliC), when used as an adjuvant, might improve the vaccine’s efficacy. The findings from this trial indicated that direct challenge with pathogenic AlHV-1 is effective at inducing MCF in SZC cattle and that FliC is not an appropriate adjuvant for this vaccine. Furthermore, with less control group cattle dying of MCF than expected we speculate that SZC cattle may have a degree of resistance to MCF that affords them protection from infection and developing fatal disease. In Chapter Three we investigated aspects of the epidemiology of MCF, specifically whether wildebeest placenta, long implicated by Maasai cattle owners as a source of MCF, might play a role in viral transmission. Additionally, through comparative sequence analysis, at two specific genes (A9.5 and ORF50) of wild-type and atAlHV-1, we investigated whether the `C5000 strain, the source of which was taken from Africa more than 40 years ago, was appropriate for vaccine development. The detection of AlHV-1 virus in approximately 50% of placentae indicated that infection can occur in-utero and that this tissue might play a role in disease transmission. And, despite describing three new alleles of the A9.5 gene (supporting previous evidence that this gene is polymorphic and encodes a secretory protein with interleukin-4 as the major homologue), the observation that the most frequently detected haplotypes, in both wild-type and attenuated AlHV-1, were identical suggests that AlHV-1 has a slow molecular clock and that the attenuated strain was appropriate for vaccine development. In Chapter Five we present the first quantitative assessment of the annual MCF avoidance costs that Maasai pastoralists incur. In particular we estimated that as a result of MCF avoidance 64% of the total daily milk yield during the MCF season was not available to be used by the 81% of the family unit remaining at the permanent boma. This represents an upper-bound loss of approximately 8% of a household0s annual income. Despite these considerable losses we concluded that, given an incidence of fatal MCF in cattle living in wildebeest calving areas of 5% to 10%, if herd owners were to stop trying to avoid MCF by allowing their cattle to graze alongside wildebeest, any gains made through increased availability of milk, improved body condition and reduced energy demands would be offset by an increase in MCF-incidence. With the development of an effective vaccine, however, this alternative strategy might become optimal. The overall conclusion we draw therefore is that, despite the substantial costs incurred each year avoiding MCF, the partial protection afforded by the novel vaccine strategy is not sufficient to warrant a wholesale change in disease avoidance strategy. Nonetheless, even the partial protection provided by this vaccine could be of value to protect animals that cannot be moved, for example where some of the herd remain at the boma to provide milk or where land-use changes make traditional disease avoidance difficult. Furthermore, the vaccine may offer a feasible solution to some of the current land-use challenges and conflicts, providing a degree of protection to valuable livestock where avoidance strategies are not possible, but with less risk of precipitating the potentially damaging environmental consequences, such as overgrazing of highly nutritious seasonal pastures, that might result if herd owners decide they no longer need to avoid wildebeest.
Resumo:
In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.
Rainfall, Mosquito Density and the Transmission of Ross River Virus: A Time-Series Forecasting Model
Resumo:
The spatial and temporal variations of Ross River virus infections reported in Queensland, Australia, between 1985 and 1996 were studied by using the Geographic Information System. The notified cases of Ross River virus infection came from 489 localities between 1985 and 1988, 805 between 1989 and 1992, and 1,157 between 1993 and 1996 (chi2(df = 2) = 680.9; P < 0.001). There was a marked increase in the number of localities where the cases were reported by 65 percent for the period of 1989-1992 and 137 percent for 1993-1996, compared with that for 1985-1988. The geographic distribution of the notified Ross River virus cases has expanded in Queensland over recent years. As Ross River virus disease has impacted considerably on tourism and industry, as well as on residents of affected areas, more research is required to explore the causes of the geographic expansion of the notified Ross River virus infections.
Resumo:
We used geographic information systems and a spatial analysis approach to explore the pattern of Ross River virus (RRV) incidence in Brisbane, Australia. Climate, vegetation and socioeconomic data in 2001 were obtained from the Australian Bureau of Meteorology, the Brisbane City Council and the Australian Bureau of Statistics, respectively. Information on the RRV cases was obtained from the Queensland Department of Health. Spatial and multiple negative binomial regression models were used to identify the socioeconomic and environmental determinants of RRV transmission. The results show that RRV activity was primarily concentrated in the northeastern, northwestern, and southeastern regions in Brisbane. Multiple negative binomial regression models showed that the spatial pattern of RRV disease in Brisbane seemed to be determined by a combination of local ecologic, socioeconomic, and environmental factors.