927 resultados para X-rays: individual (SGR J1745–2900)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultra Luminous X-ray Sources (ULXs) are extragalactic X-ray point sources with LX ∼ 1039 − 1041 erg s−1 discovered in the 80s with the Einstein satellite and confirmed as black hole X-ray binaries during the last decade. The nature of the compact object is highly controversial. They could be super-Eddington stellar-mass black holes or intermediate mass black holes. Deriving dynamical masses of the brightest ULXs, which can be done with OSIRIS, is the only way to find out the nature of the compact object.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High resolution X-ray spectroscopy is a powerful tool for studying the nature of the matter surrounding the neutron star in X-ray binaries and its interaction between the stellar wind and the compact object. In particular, absorption features in their spectra could reveal the presence of atmospheres of the neutron star or their magnetic field strength. Here we present an investigation of the absorption feature at 2.1 keV in the X-ray spectrum of the high mass X-ray binary 4U 1538–52 based on our previous analysis of the XMM-Newton data. We study various possible origins and discuss the different physical scenarios in order to explain this feature. A likely interpretation is that the feature is associated with atomic transitions in an O/Ne neutron star atmosphere or of hydrogen and helium like Fe or Si ions formed in the stellar wind of the donor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a comprehensive analysis of the whole sample of available XMM-Newton observations of high-mass X-ray binaries (HMXBs) until August 2013, focusing on the FeKα emission line. This line is key to better understanding the physical properties of the material surrounding the X-ray source within a few stellar radii (the circumstellar medium). We collected observations from 46 HMXBs and detected FeKα in 21 of them. We used the standard classification of HMXBs to divide the sample into different groups. We find that (1) different classes of HMXBs display different qualitative behaviours in the FeKα spectral region. This is visible especially in SGXBs (showing ubiquitous Fe fluorescence but not recombination Fe lines) and in γ Cass analogues (showing both fluorescent and recombination Fe lines). (2) FeKα is centred at a mean value of 6.42 keV. Considering the instrumental and fits uncertainties, this value is compatible with ionization states that are lower than Fe xviii. (3) The flux of the continuum is well correlated with the flux of the line, as expected. Eclipse observations show that the Fe fluorescence emission comes from an extended region surrounding the X-ray source. (4) We observe an inverse correlation between the X-ray luminosity and the equivalent width of FeKα (EW). This phenomenon is known as the X-ray Baldwin effect. (5) FeKα is narrow (σline< 0.15 keV), reflecting that the reprocessing material does not move at high speeds. We attempt to explain the broadness of the line in terms of three possible broadening phenomena: line blending, Compton scattering, and Doppler shifts (with velocities of the reprocessing material V ~ 1000 km s-1). (6) The equivalent hydrogen column (NH) directly correlates to the EW of FeKα, displaying clear similarities to numerical simulations. It highlights the strong link between the absorbing and the fluorescent matter. (7) The observed NH in supergiant X-ray binaries (SGXBs) is in general higher than in supergiant fast X-ray transients (SFXTs). We suggest two possible explanations: different orbital configurations or a different interaction compact object – wind. (8) Finally, we analysed the sources IGR J16320-4751 and 4U 1700-37 in more detail, covering several orbital phases. The observed variation in NH between phases is compatible with the absorption produced by the wind of their optical companions. The results clearly point to a very important contribution of the donor’s wind in the FeKα emission and the absorption when the donor is a supergiant massive star.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. We monitored the quiescent thermal emission from neutron stars in low-mass X-ray binaries after active periods of intense activity in X-rays (outbursts). Aims. The theoretical modeling of the thermal relaxation of the neutron star crust may be used to establish constraints on the crust composition and transport properties, depending on the astrophysical scenarios assumed. Methods. We numerically simulated the thermal evolution of the neutron star crust and compared them with inferred surface temperatures for five sources: MXB 1659−29, KS 1731−260, XTE J1701−462, EXO 0748−676  and IGR J17480−2446. Results. We find that the evolution of MXB 1659−29, KS 1731−260 and EXO 0748−676 can be well described within a deep crustal cooling scenario. Conversely, we find that the other two sources can only be explained with models beyond crustal cooling. For the peculiar emission of XTE J1701−462 we propose alternative scenarios such as residual accretion during quiescence, additional heat sources in the outer crust, and/or thermal isolation of the inner crust due to a buried magnetic field. We also explain the very recent reported temperature of IGR J17480−2446 with an additional heat deposition in the outer crust from shallow sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. 4U 1538−52, an absorbed high mass X-ray binary with an orbital period of ~3.73 days, shows moderate orbital intensity modulations with a low level of counts during the eclipse. Several models have been proposed to explain the accretion at different orbital phases by a spherically symmetric stellar wind from the companion. Aims. The aim of this work is to study both the light curve and orbital phase spectroscopy of this source in the long term. In particular, we study the folded light curve and the changes in the spectral parameters with orbital phase to analyse the stellar wind of QV Nor, the mass donor of this binary system. Methods. We used all the observations made from the Gas Slit Camera on board MAXI of 4U 1538−52 covering many orbits continuously. We obtained the good interval times for all orbital phase ranges, which were the input for extracting our data. We estimated the orbital period of the system and then folded the light curves, and we fitted the X-ray spectra with the same model for every orbital phase spectrum. We also extracted the averaged spectrum of all the MAXI data available. Results. The MAXI spectra in the 2–20 keV energy range were fitted with an absorbed Comptonisation of cool photons on hot electrons. We found a strong orbital dependence of the absorption column density but neither the fluorescence iron emission line nor low energy excess were needed to fit the MAXI spectra. The variation in the spectral parameters over the binary orbit were used to examine the mode of accretion onto the neutron star in 4U 1538−52. We deduce a best value of Ṁ/v∞ = 0.65 × 10-9M⊙ yr-1/ (km s-1) for QV Nor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an analysis of a 78 ks Chandra high-energy transmission gratings observation of the B0I star QV Nor, the massive donor of the wind-accreting pulsar 4U1538−52. The neutron star (NS) orbits its companion in a very close orbit (r < 1.4R*, in units of the stellar radii), thereby allowing probing of the innermost wind regions. The flux of the Fe Kα line during eclipse reduces to only ∼30% of the flux measured out of eclipse. This indicates that the majority of Fe fluorescence must be produced in regions close to the NS, at distances smaller than 1R* from its surface. The fact that the flux of the continuum decreases to only ∼3% during eclipse allows for a high contrast of the Fe Kα line fluorescence during eclipse. The line is not resolved and centered at 1.9368 0.0018 l = 0.0032 - + Å. From the inferred plasma speed limit of v < c l < 800 l D km s−1 and range of ionization parameters of log 1, 2 x = [- ], together with the stellar density profile, we constrain the location of the cold, dense material in the stellar wind of QV Nor using simple geometrical considerations. We then use the Fe Kα line fluorescence as a tracer of wind clumps and determine that these clumps in the stellar wind of QV Nor (B0I) must already be present at radii r < 1.25R*, close to the photosphere of the star.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the timing and spectral properties of the low-magnetic field, transient magnetar SWIFT J1822.3−1606 as it approached quiescence. We coherently phase-connect the observations over a time-span of ∼500 d since the discovery of SWIFT J1822.3−1606 following the Swift-Burst Alert Telescope (BAT) trigger on 2011 July 14, and carried out a detailed pulse phase spectroscopy along the outburst decay. We follow the spectral evolution of different pulse phase intervals and find a phase and energy-variable spectral feature, which we interpret as proton cyclotron resonant scattering of soft photon from currents circulating in a strong (≳1014 G) small-scale component of the magnetic field near the neutron star surface, superimposed to the much weaker (∼3 × 1013 G) magnetic field. We discuss also the implications of the pulse-resolved spectral analysis for the emission regions on the surface of the cooling magnetar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a previous work, we introduced a tool for analyzing multiple datasets simultaneously, which has been implemented into ISIS. This tool was used to fit many spectra of X-ray binaries. However, the large number of degrees of freedom and individual datasets raise an issue about a good measure for a simultaneous fit quality. We present three ways to check the goodness of these fits: we investigate the goodness of each fit in all datasets, we define a combined goodness exploiting the logical structure of a simultaneous fit, and we stack the fit residuals of all datasets to detect weak features. These tools are applied to all RXTE-spectra from GRO 1008−57, revealing calibration features that are not detected significantly in any single spectrum. Stacking the residuals from the best-fit model for the Vela X-1 and XTE J1859+083 data evidences fluorescent emission lines that would have gone undetected otherwise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. Classical supergiant X-ray binaries (SGXBs) and supergiant fast X-ray transients (SFXTs) are two types of high-mass X-ray binaries (HMXBs) that present similar donors but, at the same time, show very different behavior in the X-rays. The reason for this dichotomy of wind-fed HMXBs is still a matter of debate. Among the several explanations that have been proposed, some of them invoke specific stellar wind properties of the donor stars. Only dedicated empiric analysis of the donors’ stellar wind can provide the required information to accomplish an adequate test of these theories. However, such analyses are scarce. Aims. To close this gap, we perform a comparative analysis of the optical companion in two important systems: IGR J17544-2619 (SFXT) and Vela X-1 (SGXB). We analyze the spectra of each star in detail and derive their stellar and wind properties. As a next step, we compare the wind parameters, giving us an excellent chance of recognizing key differences between donor winds in SFXTs and SGXBs. Methods. We use archival infrared, optical and ultraviolet observations, and analyze them with the non-local thermodynamic equilibrium (NLTE) Potsdam Wolf-Rayet model atmosphere code. We derive the physical properties of the stars and their stellar winds, accounting for the influence of X-rays on the stellar winds. Results. We find that the stellar parameters derived from the analysis generally agree well with the spectral types of the two donors: O9I (IGR J17544-2619) and B0.5Iae (Vela X-1). The distance to the sources have been revised and also agree well with the estimations already available in the literature. In IGR J17544-2619 we are able to narrow the uncertainty to d = 3.0 ± 0.2 kpc. From the stellar radius of the donor and its X-ray behavior, the eccentricity of IGR J17544-2619 is constrained to e< 0.25. The derived chemical abundances point to certain mixing during the lifetime of the donors. An important difference between the stellar winds of the two stars is their terminal velocities (ν∞ = 1500 km s-1 in IGR J17544-2619 and ν∞ = 700 km s-1 in Vela X-1), which have important consequences on the X-ray luminosity of these sources. Conclusions. The donors of IGR J17544-2619 and Vela X-1 have similar spectral types as well as similar parameters that physically characterize them and their spectra. In addition, the orbital parameters of the systems are similar too, with a nearly circular orbit and short orbital period. However, they show moderate differences in their stellar wind velocity and the spin period of their neutron star which has a strong impact on the X-ray luminosity of the sources. This specific combination of wind speed and pulsar spin favors an accretion regime with a persistently high luminosity in Vela X-1, while it favors an inhibiting accretion mechanism in IGR J17544-2619. Our study demonstrates that the relative wind velocity is critical in class determination for the HMXBs hosting a supergiant donor, given that it may shift the accretion mechanism from direct accretion to propeller regimes when combined with other parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. Since its launch, the X-ray and γ-ray observatory INTEGRAL satellite has revealed a new class of high-mass X-ray binaries (HMXB) displaying fast flares and hosting supergiant companion stars. Optical and infrared (OIR) observations in a multi-wavelength context are essential to understand the nature and evolution of these newly discovered celestial objects. Aims. The goal of this multiwavelength study (from ultraviolet to infrared) is to characterise the properties of IGR J16465−4507, to confirm its HMXB nature and that it hosts a supergiant star. Methods. We analysed all OIR, photometric and spectroscopic observations taken on this source, carried out at ESO facilities. Results. Using spectroscopic data, we constrained the spectral type of the companion star between B0.5 and B1 Ib, settling the debate on the true nature of this source. We measured a high rotation velocity of v = 320 ± 8km s-1 from fitting absorption and emission lines in a stellar spectral model. We then built a spectral energy distribution from photometric observations to evaluate the origin of the different components radiating at each energy range. Conclusions. We finally show that, having accurately determined the spectral type of the early-B supergiant in IGR J16465−4507, we firmly support its classification as an intermediate supergiant fast X-ray transient (SFXT).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"The first six volumes of this work recorded the progress of Surgery down to 1913. Then came the Great War ... Hence, immediately after the Armistice ... I began to assemble a full staff of experts, whose work appears in Volumes VII and VIII."--Preface, v.7, 1921.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Research Institute, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.