1000 resultados para Wishart distribution
Resumo:
This thesis addresses voltage violation problem, the most critical issue associated with high level penetration of photovoltaic (PV) in electricity distribution network. A coordinated control algorithm using the reactive power from PV inverter and integrated battery energy storage has been developed and investigated in different network scenarios in the thesis. Probable variations associated with solar generation, end-user participation and network parameters are also considered. Furthermore, a unified data model and well-defined communication protocol to ensure the smooth coordination between all the components during the operation of the algorithm is described. Finally this thesis incorporated the uncertainties of solar generation using probabilistic load flow analysis.
Resumo:
This paper suggests a supervisory control for storage units to provide load leveling in distribution networks. This approach coordinates storage units to charge during high generation and discharge during peak load times, while utilized to improve the network voltage profile indirectly. The aim of this control strategy is to establish power sharing on a pro rata basis for storage units. As a case study, a practical distribution network with 30 buses is simulated and the results are provided.
Resumo:
Re-supplying loads on outage through cross-connect from adjacent feeders in a distribution system may cause voltage drop and hence require load shedding. However, the surplus PV generated in some of the LV feeders can prevent load shedding, and improve reliability. In order to measure these effects, this paper proposes the application of Direct Load Flow method[1] in reliability evaluation of distribution systems with PV units. As part of this study, seasonal impacts on load consumption together with surplus PV output power injection to higher voltage networks are also considered. New indices are proposed to measure yearly expected energy export, from LV to MV and from MV to higher voltage network.
Resumo:
This chapter presents the stability analysis based on bifurcation theory of the distribution static compensator (DSTATCOM) operating both in current control mode as in voltage control mode. The bifurcation analysis allows delimiting the operating zones of nonlinear power systems and hence the computation of these boundaries is of interest for practical design and planning purposes. Suitable mathematical representations of the DSTATCOM are proposed to carry out the bifurcation analyses efficiently. The stability regions in the Thevenin equivalent plane are computed for different power factors at the Point of Common Coupling (PCC). In addition, the stability regions in the control gain space are computed, and the DC capacitor and AC capacitor impact on the stability are analyzed in detail. It is shown through bifurcation analysis that the loss of stability in the DSTATCOM is in general due to the emergence of oscillatory dynamics. The observations are verified through detailed simulation studies.
Resumo:
This work examined the suitability of the PAGAT gel dosimeter for use in dose distribution measurements around high-density implants. An assessment of the gels reactivity with various metals was performed and no corrosive effects were observed. An artefact reduction technique was also investigated in order to minimise scattering of the laser light in the optical CT scans. The potential for attenuation and backscatter measurements using this gel dosimeter were examined for a temporary tissue expander's internal magnetic port.
Resumo:
In this thesis various schemes using custom power devices for power quality improvement in low voltage distribution network are studied. Customer operated distributed generators makes a typical network non-radial and affect the power quality. A scheme considering different algorithm of DSTATCOM is proposed for power circulation and islanded operation of the system. To compensate reactive power overflow and facilitate unity power factor, a UPQC is introduced. Stochastic analysis is carried out for different scenarios to get a comprehensive idea about a real life distribution network. Combined operation of static compensator and voltage regulator is tested for the optimum quality and stability of the system.
Resumo:
Long-term measurements of particle number size distribution (PNSD) produce a very large number of observations and their analysis requires an efficient approach in order to produce results in the least possible time and with maximum accuracy. Clustering techniques are a family of sophisticated methods which have been recently employed to analyse PNSD data, however, very little information is available comparing the performance of different clustering techniques on PNSD data. This study aims to apply several clustering techniques (i.e. K-means, PAM, CLARA and SOM) to PNSD data, in order to identify and apply the optimum technique to PNSD data measured at 25 sites across Brisbane, Australia. A new method, based on the Generalised Additive Model (GAM) with a basis of penalised B-splines, was proposed to parameterise the PNSD data and the temporal weight of each cluster was also estimated using the GAM. In addition, each cluster was associated with its possible source based on the results of this parameterisation, together with the characteristics of each cluster. The performances of four clustering techniques were compared using the Dunn index and Silhouette width validation values and the K-means technique was found to have the highest performance, with five clusters being the optimum. Therefore, five clusters were found within the data using the K-means technique. The diurnal occurrence of each cluster was used together with other air quality parameters, temporal trends and the physical properties of each cluster, in order to attribute each cluster to its source and origin. The five clusters were attributed to three major sources and origins, including regional background particles, photochemically induced nucleated particles and vehicle generated particles. Overall, clustering was found to be an effective technique for attributing each particle size spectra to its source and the GAM was suitable to parameterise the PNSD data. These two techniques can help researchers immensely in analysing PNSD data for characterisation and source apportionment purposes.
Resumo:
An expanding education market targeted through ‘bridging material’ enabling cineliteracies has the potential to offer Australian producers with increased distribution opportunities, educators with targeted teaching aids and students with enhanced learning outcomes. For Australian documentary producers, the key to unlocking the potential of the education sector is engaging with its curriculum-based requirements at the earliest stages of pre-production. Two key mechanisms can lead to effective educational engagement; the established area of study guides produced in association with the Australian Teachers of Media (ATOM) and the emerging area of philanthropic funding coordinated by the Documentary Australia Foundation (DAF). DAF has acted as a key financial and cultural philanthropic bridge between individuals, foundations, corporations and the Australian documentary sector for over 14 years. DAF does not make or commission films but through management and receipt of grants and donations provides ‘expertise, information, guidance and resources to help each sector work together to achieve their goals’. The DAF application process also requires film-makers to detail their ‘Education and Outreach Strategy’ for each film with 582 films registered and 39 completed as of June 2014. These education strategies that can range from detailed to cursory efforts offer valuable insights into the Australian documentary sector's historical and current expectations of education as a receptive and dynamic audience for quality factual content. A recurring film-maker education strategy found in the DAF data is an engagement with ATOM to create a study guide for their film. This study guide then acts as a ‘bridging material’ between content and education audience. The frequency of this effort suggests these study guides enable greater educator engagement with content and increased interest and distribution of the film to educators. The paper Education paths for documentary distribution: DAF, ATOM and the study guides that bind them will address issues arising out of the changing needs of the education sector and the impact targeting ‘cineliteracy’ outcomes may have for Australian documentary distribution.
Resumo:
Overvoltage and overloading due to high utilization of PVs are the main power quality concerns for future distribution power systems. This paper proposes a distributed control coordination strategy to manage multiple PVs within a network to overcome these issues. PVs reactive power is used to deal with over-voltages and PVs active power curtailment are regulated to avoid overloading. The proposed control structure is used to share the required contribution fairly among PVs, in proportion to their ratings. This approach is examined on a practical distribution network with multiple PVs.
Resumo:
This paper presents simulation results for future electricity grids using an agent-based model developed with MODAM (MODular Agent-based Model). MODAM is introduced and its use demonstrated through four simulations based on a scenario that expects a rise of on-site renewable generators and electric vehicles (EV) usage. The simulations were run over many years, for two areas in Townsville, Australia, capturing variability in space of the technology uptake, and for two charging methods for EV, capturing people's behaviours and their impact on the time of the peak load. Impact analyses of these technologies were performed over the areas, down to the distribution transformer level, where greater variability of their contribution to the assets peak load was observed. The MODAM models can be used for different purposes such as impact of renewables on grid sizing, or on greenhouse gas emissions. The insights gained from using MODAM for technology assessment are discussed.
Resumo:
Integrating renewable energy into public space is becoming more common as a climate change solution. However, this approach is often guided by the environmental pillar of sustainability, with less focus on the economic and social pillars. The purpose of this paper is to examine this issue in the speculative renewable energy propositions for Freshkills Park in New York City submitted for the 2012 Land Art Generator Initiative (LAGI) competition. This paper first proposes an optimal electricity distribution (OED) framework in and around public spaces based on relevant ecology and energy theory (Odum’s fourth and fifth law of thermodynamics). This framework addresses social engagement related to public interaction, and economic engagement related to the estimated quantity of electricity produced, in conjunction with environmental engagement related to the embodied energy required to construct the renewable energy infrastructure. Next, the study uses the OED framework to analyse the top twenty-five projects submitted for the LAGI 2012 competition. The findings reveal an electricity distribution imbalance and suggest a lack of in-depth understanding about sustainable electricity distribution within public space design. The paper concludes with suggestions for future research.
Resumo:
As cities are rapidly developing new interventions against climate change, embedding renewable energy in public spaces is an important strategy. However, most interventions primarily include environmental sustainability while neglecting the social and economic interrelationships of electricity production. Although there is a growing interest in sustainability within environmental design and landscape architecture, public spaces are still awaiting viable energy-conscious design and assessment interventions. The purpose of this paper is to investigate this issue in a renowned public space—Ballast Point Park in Sydney—using a triple bottom line (TBL) case study approach. The emerging factors and relationships of each component of TBL, within the context of public open space, are identified and discussed. With specific focus on renewable energy distribution in and around Ballast Point Park, the paper concludes with a general design framework, which conceptualizes an optimal distribution of onsite electricity produced from renewable sources embedded in public open spaces.