956 resultados para Wheat (Triticum aestivum. L.)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant litter and fine roots are important in maintaining soil organic carbon (C) levels as well as for nutrient cycling. The decomposition of surface-placed litter and fine roots of wheat ( Triticum aestivum ), lucerne ( Medicago sativa ), buffel grass ( Cenchrus ciliaris ), and mulga ( Acacia aneura ), placed at 10-cm and 30-cm depths, was studied in the field in a Rhodic Paleustalf. After 2 years, = 60% of mulga roots and twigs remained undecomposed. The rate of decomposition varied from 4.2 year -1 for wheat roots to 0.22 year -1 for mulga twigs, which was significantly correlated with the lignin concentration of both tops and roots. Aryl+O-aryl C concentration, as measured by 13 C nuclear magnetic resonance spectroscopy, was also significantly correlated with the decomposition parameters, although with a lower R 2 value than the lignin concentration. Thus, lignin concentration provides a good predictor of litter and fine root decomposition in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxygen isotopic composition of plant cellulose is commonly used for the interpretations of climate, ecophysiology and dendrochronology in both modern and palaeoenvironments. Further applications of this analytical tool depends on our in-depth knowledge of the isotopic fractionations associated with the biochemical pathways leading to cellulose. Here, we test two important assumptions regarding isotopic effects resulting from the location of oxygen in the carbohydrate moiety and the biosynthetic pathway towards cellulose synthesis. We show that the oxygen isotopic fractionation of the oxygen attached to carbon 2 of the glucose moieties differs from the average fractionation of the oxygens attached to carbons 3–6 from cellulose by at least 9%, for cellulose synthesized within seedlings of two different species (Triticum aestivum L. and Ricinus communis L.). The fractionation for a given oxygen in cellulose synthesized by the Triticum seedlings, which have starch as their primary carbon source, is different than the corresponding fractionation in Ricinus seedlings, within which lipids are the primary carbon source. This observation shows that the biosynthetic pathway towards cellulose affects oxygen isotope partitioning, a fact heretofore undemonstrated. Our findings may explain the species-dependent variability in the overall oxygen isotope fractionation during cellulose synthesis, and may provide much-needed insight for palaeoclimate reconstruction using fossil cellulose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unravelling the Musa genome allows genes and alleles linked to desired traits to be identified. Short stature and early flowering are desirable agronomic features of banana, as they are of bread wheat (Triticum aestivum). In wheat they were achieved through knowledge of the physiology and genetics of vernalization and photoperiod during development. Bananas and plantains have a facultative long-day response to photoperiod, as do wheat and wall cress (Arabidopsis thaliana). Using keyword searches of the genome of Musa acuminata 'Pahang' we found homologues of the genes of either T. aestivum or Arabidopsis that govern responses to vernalization and photoperiod. This knowledge needs to be interpreted in the context of plant development. Bananas have juvenile, mid-vegetative and reproductive phases of development. Leaf and bunch 'clocks' operate concurrently throughout the juvenile and mid-vegetative phases. In the mid-vegetative phase the plant becomes sensitive to photoperiod. Increased sensitivity to photoperiod reduces the overall pace of the bunch clock without affecting the leaf clock. Separation of the clocks changes the link between leaf number and time of flowering. The 'critical' quantitative trait for the time of flowering is the pace of the bunch clock up to bunch initiation. For bunch size it is the duration of the subsequent phase of female hand formation. Plants with either a short juvenile phase or a faster bunch clock in the mid-vegetative phase will produce fewer leaves and bunch early. In turn, independent manipulation of hand number per bunch and/or fruit per hand will provide manageable bunches with appropriate fruit size. Using published data we explore relationships between plant height, leaf number, bunch weight and hand number among bananas and plantains. Identifying and then manipulating the appropriate genes in Musa opens opportunities for earlier flowering, leading to plants with desirable agronomic qualities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most agroecosystems, nitrogen (N) is the most important nutrient limiting plant growth. One management strategy that affects N cycling and N use efficiency (NUE) is conservation agriculture (CA), an agricultural system based on a combination of minimum tillage, crop residue retention and crop rotation. Available results on the optimization of NUE in CA are inconsistent and studies that cover all three components of CA are scarce. Presently, CA is promoted in the Yaqui Valley in Northern Mexico, the country´s major wheat-producing area in which from 1968 to 1995, fertilizer application rates for the cultivation of irrigated durum wheat (Triticum durum L.) at 6 t ha-1 increased from 80 to 250 kg ha-1, demonstrating the high intensification potential in this region. Given major knowledge gaps on N availability in CA this thesis summarizes the current knowledge of N management in CA and provides insights in the effects of tillage practice, residue management and crop rotation on wheat grain quality and N cycling. Major aims of the study were to identify N fertilizer application strategies that improve N use efficiency and reduce N immobilization in CA with the ultimate goal to stabilize cereal yields, maintain grain quality, minimize N losses into the environment and reduce farmers’ input costs. Soil physical and chemical properties in CA were measured and compared with those in conventional systems and permanent beds with residue burning focusing on their relationship to plant N uptake and N cycling in the soil and how they are affected by tillage and N fertilizer timing, method and doses. For N fertilizer management, we analyzed how placement, time and amount of N fertilizer influenced yield and quality parameters of durum and bread wheat in CA systems. Overall, grain quality parameters, in particular grain protein concentration decreased with zero-tillage and increasing amount of residues left on the field compared with conventional systems. The second part of the dissertation provides an overview of applied methodologies to measure NUE and its components. We evaluated the methodology of ion exchange resin cartridges under irrigated, intensive agricultural cropping systems on Vertisols to measure nitrate leaching losses which through drainage channels ultimately end up in the Sea of Cortez where they lead to algae blooming. A throughout analysis of N inputs and outputs was conducted to calculate N balances in three different tillage-straw systems. As fertilizer inputs are high, N balances were positive in all treatments indicating the risk of N leaching or volatilization during or in subsequent cropping seasons and during heavy rain fall in summer. Contrary to common belief, we did not find negative effects of residue burning on soil nutrient status, yield or N uptake. A labeled fertilizer experiment with urea 15N was implemented in micro-plots to measure N fertilizer recovery and the effects of residual fertilizer N in the soil from summer maize on the following winter crop wheat. Obtained N fertilizer recovery rates for maize grain were with an average of 11% very low for all treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nos anos agrícolas de 2014/2015 e 2015/2016, realizaram-se dois ensaios de campo na Herdade Experimental da Almocreva (Beja) com o objetivo de estudar o efeito do herbicida Pacífica Plus® no controlo de infestantes em pós-emergência da cultura do trigo mole (Triticum aestivum L.). No 1º ano dos ensaios (2014/2015) estudou-se a eficácia do herbicida no controlo do Lolium rigidum G. e de diversas infestantes de folha larga (dicotiledóneas), enquanto no 2º ano de ensaios, dada a reduzida população de infestantes de folha estreita (monocotiledóneas) presentes no ensaio, apenas foi possível estudar a eficácia do herbicida, no controlo das dicotiledóneas. O herbicida foi aplicado em 3 doses (D1-0,3; D2-0,4 e D3-0,5 kg/ha), não se tendo verificado diferenças significativas no controlo das infestantes, em ambos os anos de ensaios, o que se refletiu também na diferença não significativa na produtividade da cultura.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rotação de culturas é uma prática agronómica importante em todos os sistemas de agricultura. A alternância de culturas de espécies com características distintas ao nível morfo³gico (sistema radical), ciclo vegetativo (épocas distintas de sementeira e colheita) e ao nível da sua resistência a pragas e doenças, contribui para o aumento da melhoria das características físicas, químicas e bio³gicas dos solos. A rotação de culturas pode melhorar a estrutura do solo, quer pela introdução de matéria orgânica, quer pela porosidade bio³gica criada pelas raízes das culturas. O aumento da porosidade bio³gica conduzirá a uma maior infiltração da água no solo com consequência na redução do escoamento superficial e portanto, da erosão hídrica. O acréscimo da porosidade bio³gica no solo pelas raízes é de extrema importância, principalmente em sistemas de mobilização nula (sementeira directa). A utilização de plantas leguminosas, como por exemplo a Vicia sativa L. (vicia ou ervilhaca) a Lupinus luteus L.(tremocilha), o Cicer arietinum L. (grão-de-bico) a Pisum sativum L. (ervilha), etc., na rotação, favorecerá o incremento de azoto no solo, o qual será favorável ao crescimento das gramíneas com redução dos seus custos de produção. Outro aspecto extremamente importante da rotação de culturas prende-se com a melhor distribuição do parque de máquinas e da mão-de-obra ao longo do ano, fazendo-se alternar culturas com épocas de sementeira e de colheita diferentes, como por exemplo o Helianthus annuus L. (girassol) que é uma cultura de primavera-verão, o trigo mole (Triticum aestivum L.) e a cevada dística (Hordeum distichum L.) que são culturas de outono-inverno, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O fator cobertura e manejo do solo (fator C da Equação Universal de Perda de Solo- EUPS) é um dos mais importantes na redução das perdas de solo por erosão hídrica. Com objetivo de avaliar as razões de perda de solo (RPS) e o fator C, conduziu-se um experimento sob chuva natural em um Cambissolo Húmico alumínico ©ptico, com declividade média de 0,102 m m-1, em Lages, SC, no período de novembro de 2002 a outubro de 2005, compreendendo seis ciclos culturais. Os parâmetros foram avaliados em cinco estádios, com base na cobertura do solo pelo dossel das plantas. Foram estudados três sistemas de manejo do solo: aração + duas gradagens (PC), escarificação + uma gradagem (CM) e semeadura direta (SD), submetidos a sucessão soja (Glycine max) e trigo (Triticum aestivum L.), a©m de um tratamento adicional, com aração + duas gradagens sem culturas (SC). As RPS e os fatores C, variaram quanto aos ciclos, estádios das culturas e sistemas de manejo do solo. A SD reduziu as RPS, em 85% e 48% em relação ao PC e CM, respectivamente, durante os cultivos de soja e em 60% e 55% nos cultivos de trigo. Na média dos três anos de estudo, os valores do fator C, foram de 0,073 (PC), 0,016 (CM) e 0,007 (SD) Mg ha Mg-1 ha-1 durante os cultivos de soja e 0,126 (PC), 0,083 (CM) e 0,035 (SD) Mg ha Mg-1 ha-1 durante os cultivos de trigo. Para a sucessão de culturas soja-trigo, os valores do fator C foram de 0,198, 0,099 e 0,042 Mg ha Mg-1 ha-1, para PC, CM e SD, respectivamente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effects of plant height on Fusarium crown rot (FCR) disease severity were investigated using 12 pairs of near-isogenic lines (NILs) for six different reduced height (Rht) genes in wheat. The dwarf isolines all gave better FCR resistance when compared with their respective tall counterparts, although the Rht genes involved in these NILs are located on several different chromosomes. Treating plants with exogenous gibberellin increased FCR severity as well as seedling lengths in all of the isolines tested. Analysis of the expression of several defense genes with known correlation with resistance to FCR pathogens between the Rht isolines following FCR inoculation indicated that the better resistance of the dwarf isolines was not due to enhanced defense gene induction. These results suggested that the difference in FCR severity between the tall and dwarf isolines is likely due to their height difference per se or to some physiological and structural consequences of reduced height. Thus, caution should be taken when considering to exploit any FCR locus located near a height gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecno³gico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies in rodents treated with the pro-carcinogen 1,2-dimethylhydrazine suggested that the consumption of wheat bran protected against DNA damage in the colon and rectum. Based on this information, we evaluated wheat bran as a functional food in the prevention and treatment of colon cancer. We used the aberrant crypt focus assay to evaluate the anticarcinogenic potential of wheat bran (Triticum aestivum variety CD-104), the comet assay to evaluate its antigenotoxicity potential, and the micronucleus assay to evaluate its antimutagenic potential. The wheat bran gave good antimutagenic and anticarcinogenic responses; the DNA damage decreased from 90.30 to 26.37% and from 63.35 to 28.73%, respectively. However, the wheat bran did not significantly reduce genotoxicity. Further tests will be necessary, including tests in human beings, before this functional food can be recommended as an adjunct in the prevention and treatment of colon cancer. © FUNPEC-RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light plays a unique role for plants as it is both a source of energy for growth and a signal for development. Light captured by the pigments in the light harvesting complexes is used to drive the synthesis of the chemical energy required for carbon assimilation. The light perceived by photoreceptors activates effectors, such as transcription factors (TFs), which modulate the expression of light-responsive genes. Recently, it has been speculated that increasing the photosynthetic rate could further improve the yield potential of three carbon (C3) crops such as wheat. However, little is currently known about the transcriptional regulation of photosynthesis genes, particularly in crop species. Nuclear factor Y (NF-Y) TF is a functionally diverse regulator of growth and development in the model plant species, with demonstrated roles in embryo development, stress response, flowering time and chloroplast biogenesis. Furthermore, a light-responsive NF-Y binding site (CCAAT-box) is present in the promoter of a spinach photosynthesis gene. As photosynthesis genes are co-regulated by light and co-regulated genes typically have similar regulatory elements in their promoters, it seems likely that other photosynthesis genes would also have light-responsive CCAAT-boxes. This provided the impetus to investigate the NF-Y TF in bread wheat. This thesis is focussed on wheat NF-Y members that have roles in light-mediated gene regulation with an emphasis on their involvement in the regulation of photosynthesis genes. NF-Y is a heterotrimeric complex, comprised of the three subunits NF-YA, NF-YB and NF-YC. Unlike the mammalian and yeast counterparts, each of the three subunits is encoded by multiple genes in Arabidopsis. The initial step taken in this study was the identification of the wheat NF-Y family (Chapter 3). A search of the current wheat nucleotide sequence databases identified 37 NF-Y genes (10 NF-YA, 11 NF-YB, 14 NF-YC & 2 Dr1). Phylogenetic analysis revealed that each of the three wheat NF-Y (TaNF-Y) subunit families could be divided into 4-5 clades based on their conserved core regions. Outside of the core regions, eleven motifs were identified to be conserved between Arabidopsis, rice and wheat NF-Y subunit members. The expression profiles of TaNF-Y genes were constructed using quantitative real-time polymerase chain reaction (RT-PCR). Some TaNF-Y subunit members had little variation in their transcript levels among the organs, while others displayed organ-predominant expression profiles, including those expressed mainly in the photosynthetic organs. To investigate their potential role in light-mediated gene regulation, the light responsiveness of the TaNF-Y genes were examined (Chapters 4 and 5). Two TaNF-YB and five TaNF-YC members were markedly upregulated by light in both the wheat leaves and seedling shoots. To identify the potential target genes of the light-upregulated NF-Y subunit members, a gene expression correlation analysis was conducted using publically available Affymetrix Wheat Genome Array datasets. This analysis revealed that the transcript expression levels of TaNF-YB3 and TaNF-YC11 were significantly correlated with those of photosynthesis genes. These correlated express profiles were also observed in the quantitative RT-PCR dataset from wheat plants grown under light and dark conditions. Sequence analysis of the promoters of these wheat photosynthesis genes revealed that they were enriched with potential NF-Y binding sites (CCAAT-box). The potential role of TaNF-YB3 in the regulation of photosynthetic genes was further investigated using a transgenic approach (Chapter 5). Transgenic wheat lines constitutively expressing TaNF-YB3 were found to have significantly increased expression levels of photosynthesis genes, including those encoding light harvesting chlorophyll a/b-binding proteins, photosystem I reaction centre subunits, a chloroplast ATP synthase subunit and glutamyl-tRNA reductase (GluTR). GluTR is a rate-limiting enzyme in the chlorophyll biosynthesis pathway. In association with the increased expression of the photosynthesis genes, the transgenic lines had a higher leaf chlorophyll content, increased photosynthetic rate and had a more rapid early growth rate compared to the wild-type wheat. In addition to its role in the regulation of photosynthesis genes, TaNF-YB3 overexpression lines flower on average 2-days earlier than the wild-type (Chapter 6). Quantitative RT-PCR analysis showed that there was a 13-fold increase in the expression level of the floral integrator, TaFT. The transcript levels of other downstream genes (TaFT2 and TaVRN1) were also increased in the transgenic lines. Furthermore, the transcript levels of TaNF-YB3 were significantly correlated with those of constans (CO), constans-like (COL) and timing of chlorophyll a/b-binding (CAB) expression 1 [TOC1; (CCT)] domain-containing proteins known to be involved in the regulation of flowering time. To summarise the key findings of this study, 37 NF-Y genes were identified in the crop species wheat. An in depth analysis of TaNF-Y gene expression profiles revealed that the potential role of some light-upregulated members was in the regulation of photosynthetic genes. The involvement of TaNF-YB3 in the regulation of photosynthesis genes was supported by data obtained from transgenic wheat lines with increased constitutive expression of TaNF-YB3. The overexpression of TaNF-YB3 in the transgenic lines revealed this NF-YB member is also involved in the fine-tuning of flowering time. These data suggest that the NF-Y TF plays an important role in light-mediated gene regulation in wheat.