962 resultados para Weathered soils
Resumo:
Artificial radionuclides ((137)Cs, (90)Sr, Pu, and (241)Am) are present in soils because of Nuclear Weapon Tests and accidents in nuclear facilities. Their distribution in soil depth varies according to soil characteristics, their own chemical properties, and their deposition history. For this project, we studied the atmospheric deposition of (137)Cs, (90)Sr, Pu, (241)Am, (210)Pb, and stable Pb. We compared the distribution of these elements in soil profiles from different soil types from an alpine Valley (Val Piora, Switzerland) with the distribution of selected major and trace elements in the same soils. Our goals were to explain the distribution of the radioisotopes as a function of soil parameters and to identify stable elements with analogous behaviors. We found that Pu and (241)Am are relatively immobile and accumulate in the topsoil. In all soils, (90)Sr is more mobile and shows some accumulations at depth into Fe-Al rich horizons. This behavior is also observed for Cu and Zn, indicating that these elements may be used as chemical analogues for the migration of (90)Sr into the soil.
Resumo:
The remaining phosphorus (Prem) has been used for estimating the phosphorus buffer capacity (PBC) of soils of some Brazilian regions. Furthermore, the remaining phosphorus can also be used for estimating P, S and Zn soil critical levels determined with PBC-sensible extractants and for defining P and S levels to be used not only in P and S adsorption studies but also for the establishment of P and S response curves. The objective of this work was to evaluate the effects of soil clay content and clay mineralogy on Prem and its relationship with pH values measured in saturated NaF solution (pH NaF). Ammonium-oxalate-extractable aluminum exerts the major impacts on both Prem and pH NaF, which, in turn, are less dependent on soil clay content. Although Prem and pH NaF have consistent correlation, the former has a soil-PBC discriminatory capacity much greater than pH NaF.
Resumo:
This report contains a general colored soil map of Boone County and information on the county's soil physiology, drainage and fertility. It also includes information on field experiments, rotation of crops, prevention of erosion, soil types and other vital soil information in Boone County.
Resumo:
A procedure was developed for determining Pu-241 activity in environmental samples. This beta emitter isotope of plutonium was measured by ultra low level liquid scintillation, after several separation and purification steps that involved the use of a highly selective extraction chromatographic resin (Eichrom-TEVA). Due to the lack of reference material for Pu-241, the method was nevertheless validated using four IAEA reference sediments with information values for Pu-241. Next, the method was used to determine the Pu-241 activity in alpine soils of Switzerland and France. The Pu-241/Pu-239,Pu-240 and Pu-238/Pu-239,Pu-240 activity ratios confirmed that Pu contamination in the tested alpine soils originated mainly from global fallout from nuclear weapon tests conducted in the fifties and sixties. Estimation of the date of the contamination, using the Pu-241/Am-241 age-dating method, further confirmed this origin. However, the Pu-241/Am-241 dating method was limited to samples where Pu-Am fractionation was insignificant. If any, the contribution of the Chernobyl accident is negligible.
Resumo:
The objective of this work was to identify the most competitive and effective Rhizobium strains in order to increase common bean yield by nitrogen fixation as alternative or complementation to the nitrogen fertilization. Competitiveness tests were lead in axenic conditions, in Cerrado soil pots and in three field experiments, with native Rhizobium strains that were previously identified, according to their effectiveness and genetic variability. The identification of strains in nodules was performed using serological tests (axenic conditions) - agglutination and enzyme linked immunosorbent (Elisa) assays - and random amplified polymorfic DNA (RAPD) (Cerrado soil). Plant yield was determined using the dry weight (greenhouse conditions), total N and grain yield (field experiments). Among the analyzed Rhizobium strains, native strain SLA 2.2 and commercial strain CIAT 899 were the dominant nodules in plants of the most productive plots, presenting yield productivity similar or higher to those obtained in treatments where 20 kg ha-1 of N were applied.
Resumo:
The objective of this work was to develop a simplified numerical procedure for the estimation of accumulated monthly hours of solarized soil temperatures. The proposed model requires monthly means of daily solar radiation and maximum air temperature as input data, and a daily pattern of temperature variation assumed to be sine-shaped. The procedure was verified using observations made during the years 1992 and 1993 in Jaguariúna, SP. The proposed procedure can predict monthly temperature hours at 10 cm depth in the solarized soil, with acceptable accuracy, in the region for which it was developed.
Resumo:
The Quality Management Earthwork (QM-E) special provision was implemented on a pilot project to evaluate quality control (QC) and quality assurance (QA) testing in predominately unsuitable soils. Control limits implemented on this pilot project included the following: 95% relative compaction, moisture content not exceeding +/- 2% of optimum moisture content, soil strength not exceeding a dynamic cone penetrometer (DCP) index of 70 mm/blow, vertical uniformity not exceeding a variation in DCP index of 40 mm/blow, and lift thickness not exceeding depth determined through construction of control strips. Four-point moving averages were used to allow for some variability in the measured parameter values. Management of the QC/QA data proved to be one of the most challenging aspects of the pilot project. Implementing use of the G-RAD data collection system has considerable potential to reduce the time required to develop and maintain QC/QA records for projects using the QM-E special provision. In many cases, results of a single Proctor test were used to establish control limits that were used for several months without retesting. While the data collected for the pilot project indicated that the DCP index control limits could be set more tightly, there is not enough evidence to support making a change. In situ borings, sampling, and testing in natural unsuitable cut material and compacted fill material revealed that the compacted fill had similar strength characteristics to that of the natural cut material after less than three months from the start of construction.
Resumo:
This report describes a study to evaluate Geopier® soil reinforcement technology in transportation construction. Three projects requiring settlement control were chosen for evaluation—an embankment foundation, a box culvert, and a bridge approach fill. For each project, construction observations, in situ soil testing, laboratory material characterization, and performance monitoring were carried out. For the embankment foundation project, Geopier elements were installed within and around an abutment footprint for the new I-35 overpass at the US Highway 5/Interstate 35 interchange in Des Moines, Iowa. Although the main focus of this investigation was to evaluate embankment foundation reinforcement using Geopier elements, a stone column reinforced soil provided an opportunity to compare systems. In situ testing included cone penetration tests (CPTs), pressuremeter tests (PMTs), Ko stepped blade tests, and borehole shear tests (BSTs), as well as laboratory material testing. Comparative stiffness and densities of Geopier elements and stone columns were evaluated based on full-scale modulus load tests and standard penetration tests. Vibrating wire settlement cells and total stress cells were installed to monitor settlement and stress concentration on the reinforcing elements and matrix soil. Settlement plates were also monitored by conventional optical survey methods. Results show that the Geopier system and the stone columns performed their intended functions. The second project involved settlement monitoring of a 4.2 m wide x 3.6 m high x 50 m long box culvert constructed beneath a bridge on Iowa Highway 191 south of Neola, Iowa. Geopier elements were installed to reduce total and differential settlement while ensuring the stability of the existing bridge pier foundations. Benefits of the box culvert and embankment fill included (1) ease of future roadway expansion and (2) continual service of the roadway throughout construction. Site investigations consisted of in situ testing including CPTs, PMTs, BSTs, and dilatometer tests. Consolidated drained triaxial compression tests, unconsolidated undrained triaxial compression test, oedometer tests, and Atterberg limit tests were conducted to define strength and consolidation parameters and soil index properties for classification. Vibrating wire settlement cells, total stress cells, and piezometers were installed for continuous monitoring during and after box culvert construction and fill placement. This project was successful at controlling settlement of the box culvert and preventing downdrag of the bridge foundations, but could have been enhanced by reducing the length of Geopier elements at the ends of the box culvert. This would have increased localized settlement while reducing overall differential settlement. The third project involved settlement monitoring of bridge approach fill sections reinforced with Geopier elements. Thirty Geopier elements, spaced 1.8 m apart in six rows of varying length, were installed on both sides of a new bridge on US Highway 18/218 near Charles City, Iowa. Based on the results of this project, it was determined that future applications of Geopier soil reinforcement should consider extending the elements deeper into the embankment foundation fill, not just the fill itself.
Resumo:
Soil treated with self-cementing fly ash is increasingly being used in Iowa to stabilize fine-grained pavement subgrades, but without a complete understanding of the short- and long-term behavior. To develop a broader understanding of fly ash engineering properties, mixtures of five different soil types, ranging from ML to CH, and several different fly ash sources (including hydrated and conditioned fly ashes) were evaluated. Results show that soil compaction characteristics, compressive strength, wet/dry durability, freeze/thaw durability, hydration characteristics, rate of strength gain, and plasticity characteristics are all affected by the addition of fly ash. Specifically, Iowa selfcementing fly ashes are effective at stabilizing fine-grained Iowa soils for earthwork and paving operations; fly ash increases compacted dry density and reduces the optimum moisture content; strength gain in soil-fly ash mixtures depends on cure time and temperature, compaction energy, and compaction delay; sulfur contents can form expansive minerals in soil–fly ash mixtures, which severely reduces the long-term strength and durability; fly ash increases the California bearing ratio of fine-grained soil–fly ash effectively dries wet soils and provides an initial rapid strength gain; fly ash decreases swell potential of expansive soils; soil-fly ash mixtures cured below freezing temperatures and then soaked in water are highly susceptible to slaking and strength loss; soil stabilized with fly ash exhibits increased freeze-thaw durability; soil strength can be increased with the addition of hydrated fly ash and conditioned fly ash, but at higher rates and not as effectively as self-cementing fly ash. Based on the results of this study, three proposed specifications were developed for the use of self-cementing fly ash, hydrated fly ash, and conditioned fly ash. The specifications describe laboratory evaluation, field placement, moisture conditioning, compaction, quality control testing procedures, and basis of payment.
Resumo:
To provide insight into subgrade non-uniformity and its effects on pavement performance, this study investigated the influence of non-uniform subgrade support on pavement responses (stress and deflection) that affect pavement performance. Several reconstructed PCC pavement projects in Iowa were studied to document and evaluate the influence of subgrade/subbase non-uniformity on pavement performance. In situ field tests were performed at 12 sites to determine the subgrade/subbase engineering properties and develop a database of engineering parameter values for statistical and numerical analysis. Results of stiffness, moisture and density, strength, and soil classification were used to determine the spatial variability of a given property. Natural subgrade soils, fly ash-stabilized subgrade, reclaimed hydrated fly ash subbase, and granular subbase were studied. The influence of the spatial variability of subgrade/subbase on pavement performance was then evaluated by modeling the elastic properties of the pavement and subgrade using the ISLAB2000 finite element analysis program. A major conclusion from this study is that non-uniform subgrade/subbase stiffness increases localized deflections and causes principal stress concentrations in the pavement, which can lead to fatigue cracking and other types of pavement distresses. Field data show that hydrated fly ash, self-cementing fly ash-stabilized subgrade, and granular subbases exhibit lower variability than natural subgrade soils. Pavement life should be increased through the use of more uniform subgrade support. Subgrade/subbase construction in the future should consider uniformity as a key to long-term pavement performance.
Resumo:
In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results of LRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured load-displacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.
Resumo:
Selostus: Pitkäaikaisen fosforilannoituksen vaikutus Suomen peltojen fosforitilaan. 1. Maan luontainen ja aikaisemmin kertynyt fosfori 24 koepaikalla
Resumo:
The objective of this work was to evaluate the effects of pollutants on the abundance and diversity of Collembola in urban soils. The research was carried out in three parks (Cişmigiu, Izvor and Unirea) in downtown Bucharest, where the intense car traffic accounts for 70% of the local air pollution. One site in particular (Cişmigiu park) was highly contaminated with Pb, Cd, Zn and Cu at about ten times the background levels of Pb. Collembola were sampled in 2006 (July, September, November) using the transect method: 2,475 individuals from 34 species of Collembola were collected from 210 samples of soil and litter. Numerical densities differed significantly between the studied sites.The influence of air pollutants on the springtail fauna was visible at the species richness diversity and soil pollution levels. Species richness was lowest in the most contaminated site (Cismigiu, 11 species), which presented an increase in springtails abundances, though. Some species may become resistant to pollution and occur in high numbers of individuals in polluted sites, which makes them a good bioindicator of pollutants.
Resumo:
The origin of soil mineralized nanofibres remains controversial. It is attributed to either biogenic factors or physicochemical processes. Scanning electron microscope and transmission electron microscope observations show that nanofibres could originate from the breakdown of fungal hyphae, especially its cell wall. It is hypothesized that during the decay of organic matter, cell wall microfibrils are released in the soil where they are exposed to mineralizing pore fluids, leading to their calcitic pseudomorphosis and/or are used as a template for calcite precipitation. When associated with needle fibre calcite bundles, nanofibres could indicate the relict of an organic sheath in which calcite has precipitated. This paper emphasizes the important roles of both organic matter and fungi in carbonatogenesis, and consequently in the soil carbon cycle.