924 resultados para Water Pollution.
Resumo:
Numerous potentially mutagenic chemicals have been studied mainly because they can cause damaging and inheritable changes in the genetic material. Several tests are commonly used for biomonitoring pollution levels and to evaluate the effects of toxic and mutagenic agents present in the natural environment. This study aimed at assessing the potential of a textile effluent contaminated with azo dyes to induce chromosomal and nuclear aberrations in Allium cepa test systems. A continuous exposure of seeds in samples of the textile effluent in different concentrations was carried out (0.3%, 3%, 10%, and 100%). Cells in interphase and undergoing division were examined to assess the presence of chromosome aberrations, nuclear changes, and micronuclei. Our results revealed a mutagenic effect of the effluent at concentrations of 10% and 100%. At lower concentrations, the effluent (3% and 0.3%) did not induce mutagenic alterations in the test organism A. cepa. These findings are of concern, since cell damage may be transmitted to subsequent generations, possibly affecting the organism as a whole, as well as the local biota exposed to the effluent discharge. If the damage results in cell death, the development of the organism may be affected, which could also lead to its death. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this study was to evaluate the toxicity of water which flows toward the beaches of Santos, SP, Brazil. Water samples were collected from eight urban drainage channels and a small creek, in March, April and August 2005. For each sample, some physical-chemical parameters were analyzed: pH, dissolved oxygen, temperature, salinity, presence of free chlorine and total ammonia contents. Acute toxicity tests (48h) with Daphnia similis were also performed with the samples. The level of ammonia was relatively high in the majority of the samples (≥ 1.5 mg/L), and free chlorine was measurable in most of them. Acute toxicity was observed in four water samples (stations 3, 4, 5 and 7), at least in one occasion. The toxicity was positively correlated with the ammonia concentrations and salinity. Because acute toxicity was detected, actions aiming to control the pollution sources and improve the water quality are recommended.
Resumo:
The environmental degradation observed in the Piracicaba, Capivari and Jundiaí watershed has been one of the principal preoccupations of the environmental agencies in the state of São Paulo, Brazil. In this context, there is inserted the Americana county which is cut by streams of unsuitable quality for the human consumption and other uses. The main goal of the present work was evaluated the water quality of the Recanto Creek, affluent of the Quilombo stream, at the Americana county, state of São Paulo, Brazil. The research was developed in the period from March of 2007 to March of 2008, when it was measured the flow and the following physical-chemical water quality parameters: temperature; turbidity; pH; dissolved oxygen (OD); phosphorus (P); ammonia nitrogen (NH 4); nitrate (NO 3); chemical demand of oxygen (DQO), besides total coliforms. The results demonstrated a variation of the flow from 34.3 to 375.2 L s -1, during the evaluated period. The parameters dissolved oxygen, phosphorus, ammonia nitrogen and nitrate presented values out of the limits recommended for rivers of class 3, like the Recanto Creek, suggesting water pollution due to the organic matter disposal.
Resumo:
Includes bibliography
Resumo:
Studying the physical environment of a watershed is the basic condition for a successful planning of the riparian forest preservation, and for water production and conservation. The aims of the present study were to analyze and quantify the spatial and temporal evolution (1984 and 2010) using Landsat-5 satellite images of Cintra Stream sub-watershed, Botucatu, São Paulo State, Brazil, processed by the software IDRISI Andes, as well as to analyze the water quality through the parameters pH, EC, DO and BOD5 at 4 different sites in the years 1999, 2008 and 2009. Considering the 1076.48ha area of the sub-watershed, the pasture class of 1984 was reduced by 25.55% in 2010, resulting in an increase in the remaining classes. The most important class was native forest and reforestation since it had an increase of 5.08%, which indicates recovery of the riparian forest. Degraded areas were identified close to the inferior limit of the sub-watershed (P3 and P4), as well as local contamination (P1 and P2) with worsening of the water quality in the remaining sites in the periods 2008 and 2009. Recovery and management of the ecological succession of degraded areas and water quality monitoring at 1 and 2 sites will be necessary to reestablish the natural condition of the area studied.
Resumo:
Selenium (Se) is described as an essential micronutrient and participates in different biological functions, as the antioxidant defense systems maintenance and regulation. However, when in high concentrations, Se may cause toxic effects as well as hematological changes in fish. The aim of the present study was to determine the toxicity of selenium in the form of sodium selenate (Na 2Se 6+O 4) in Oreochromis niloticus based on hematological parameters, after exposure to different concentrations (0.01, 0.14 and 1.4 mg Se 6+ L -1). The erythrocytic and leukocytic series were examined over 14 days at intervals of 0, 3, 5, 7,10 and 14 days. The erythrocytic series showed significant alterations in the first 7 days, including the control group. Neutrophils and monocytes showed variations in the first 3 days at a concentration of 1.40 mgSe 6+ L -1 characterizing an acute response. The total number of leukocytes was different in relation to time zero on all Se concentrations. The thrombocyte count also differed statistically from time zero and control in the first 3 days at 0.14 mgSe 6+ L -1. These results indicate that different concentrations induce an acute response with diminution of total leukocytes, neutrophilia, monocytosis and thrombocytosis.
Resumo:
Chemical reagents used by the textile industry are very diverse in their composition, ranging from inorganic compounds to polymeric compounds. Strong color is the most notable characteristic of textile effluents, and a large number of processes have been employed for color removal. In recent years, attention has been directed toward various natural solid materials that are able to remove pollutants from contaminated water at low cost, such as sugarcane bagasse. Cell immobilization has emerged as an alternative that offers many advantages in the biodegradation process, including the reuse of immobilized cells and high mechanical strength, which enables metabolic processes to occur under adverse conditions of pH, sterility, and agitation. Support treatment also increases the number of charges on the surface, thereby facilitating cell immobilization processes through adsorption and ionic bonds. Polyethyleneimine (PEI) is a polycationic compound known to have a positive effect on enzyme activity and stability. The aim of the present study was to investigate a low-cost alternative for the biodegradation and bioremediation of textile dyes, analyzing Saccharomyces cerevisiae immobilization in activated bagasse for the promotion of Acid Black 48 dye biodegradation in an aqueous solution. A 1 % concentration of a S. cerevisiae suspension was evaluated to determine cell immobilization rates. Once immobilization was established, biodegradation assays with free and immobilized yeast in PEI-treated sugarcane bagasse were evaluated for 240 h using UV-vis spectrophotometry. The analysis revealed significant relative absorbance values, indicating the occurrence of biodegradation in both treatments. Therefore, S. cerevisiae immobilized in sugarcane bagasse is very attractive for use in biodegradation processes for the treatment of textile effluents. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
The BTEX (benzene, toluene, ethylbenzene and xylene) mixture is an environmental pollutant that has a high potential to contaminate water resources, especially groundwater. The bioremediation process by microorganisms has often been used as a tool for removing BTEX from contaminated sites. The application of biological assays is useful in evaluating the efficiency of bioremediation processes, besides identifying the toxicity of the original contaminants. It also allows identifying the effects of possible metabolites formed during the biodegradation process on test organisms. In this study, we evaluated the genotoxic and mutagenic potential of five different BTEX concentrations in rat hepatoma tissue culture (HTC) cells, using comet and micronucleus assays, before and after biodegradation. A mutagenic effect was observed for the highest concentration tested and for its respective non-biodegraded concentration. Genotoxicity was significant for all non-biodegraded concentrations and not significant for the biodegraded ones. According to our results, we can state that BTEX is mutagenic at concentrations close to its water solubility, and genotoxic even at lower concentrations, differing from some described results reported for the mixture components, when tested individually. Our results suggest a synergistic effect for the mixture and that the biodegradation process is a safe and efficient methodology to be applied at BTEX-contaminated sites. © 2012 Elsevier Ltd.
Resumo:
Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC-ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. © 2012 Elsevier B.V..
Electrochemical oxidation of wastewater containing aromatic amines using a flow electrolytic reactor
Resumo:
Aromatic amines are environmental pollutants and represent one of the most important classes of industrial and natural chemicals. Some types of complex effluents containing these chemical species, mainly those originated from chemicals plants are not fully efficiently treated by conventional processes. In this work, the use of electrochemical technology through an electrolytic pilot scale flow reactor is considered for treatment of wastewater of a chemical industry manufacturer of antioxidant and anti-ozonant substances used in rubber. Experimental results showed that was possible to remove between 65% and 95% of apparent colour and chemical oxygen demand removal between 30 and 90% in 60 min of treatment, with energy consumption rate from 26 kWh m-3 to 31 kWh m-3. Absorbance, total organic carbon and toxicity analyses resulted in no formation of toxic by-products. The results suggest that the presented electrochemical process is a suitable method for treating this type of wastewater, mainly when pre-treated by aeration. Copyright © 2013 Inderscience Enterprises Ltd.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)