898 resultados para Water Management
Resumo:
Although there is an increasing recognition of the impacts of climate change on communities, residents often resist changing their lifestyle to reduce the effects of the problem. By using a landscape architectural design medium, this paper argues that public space, when designed as an ecological system, has the capacity to create social and environmental change and to increase the quality of the human environment. At the same time, this ecological system can engage residents, enrich the local economy, and increase the social network. Through methods of design, research and case study analysis, an alternative master plan is proposed for a sustainable tourism development in Alacati, Turkey. Our master plan uses local geographical, economic and social information within a sustainable landscape architectural design scheme that addresses the key issues of ecology, employment, public space and community cohesion. A preliminary community empowerment model (CEM) is proposed to manage the designs. The designs address: the coexistence of local agricultural and sustainable energy generation; state of the art water management; and the functional and sustainable social and economic interrelationship of inhabitants, NGOs, and local government.
Resumo:
Although there is an increasing recognition of the impacts of climate change on communities, residents often resist changing their lifestyle to reduce the effects of the problem. By using a landscape architectural design medium, this paper argues that public space, when designed as an ecological system, has the capacity to create social and environmental change and to increase the quality of the human environment. At the same time, this ecological system can engage residents, enrich the local economy, and increase the social network. Through methods of design, research and case study analysis, an alternative master plan is proposed for a sustainable tourism development in Alacati, Turkey. Our master plan uses local geographical, economic and social information within a sustainable landscape architectural design scheme that addresses the key issues of ecology, employment, public space and community cohesion. A preliminary community empowerment model (CEM) is proposed to manage the designs. The designs address: the coexistence of local agricultural and sustainable energy generation; state of the art water management; and the functional and sustainable social and economic interrelationship of inhabitants, NGOs, and local government.
Resumo:
Dry river beds are common worldwide and are rapidly increasing in extent due to the effects of water management and prolonged drought periods due to climate change. While attention has been given to the responses of aquatic invertebrates to drying rivers, few studies exist on the terrestrial invertebrates colonizing dry river beds. Dry river beds are physically harsh and they often differ substantially in substrate, topography, microclimate and inundation frequency from adjacent riparian zones. Given these differences, we predicted that dry river beds provide a unique habitat for terrestrial invertebrates, and that their assemblage composition differs from that in adjacent riparian zones. Dry river beds and riparian zones in Australia and Italy were sampled for terrestrial invertebrates with pitfall traps. Sites differed in substrate type, climate and flow regime. Dry river beds contained diverse invertebrate assemblages and their composition was consistently different from adjacent riparian zones, irrespective of substrate, climate or hydrology. Although some taxa were shared between dry river beds and riparian zones, 66 of 320 taxa occurred only in dry river beds. Differences were due to species turnover, rather than shifts in abundance, indicating that dry river bed assemblages are not simply subsets of riparian assemblages. Some spatial patterns in invertebrate assemblages were associated with environmental variables (irrespective of habitat type), but these associations were statistically weak. We suggest that dry river beds are unique habitats in their own right. We discuss potential human stressors and management issues regarding dry river beds and provide recommendations for future research.
Resumo:
Background The aim of this study is to examine the flood fatality with a view to identifying risks which may inform public policy responses to future flood. On July 21st, 2012, Beijing suffered the heaviest rain since 1963. The average rainfall was 215 mm over a 24 hour period in the central city (301mm in Fangshan District). The rain resulted in a flood that caused severe health, social and financial impact. Results This flood caused 79 deaths. Of the 71 deaths for which a specific cause could be identified, 5 were rescue team members, 42 were killed by drowning (11 in the car), and the others by electricity shock, fallen house, falling items and lightning. The total financial cost was estimated to be US$ 1.7 billion. The causations of the deaths inform the risks associated with the flood. Discussion This flood had a catastrophic impact on Beijing, mainly due to the intensity of the rain (the rain was the heaviest in the modern Beijing history; possibly due to global warming and urban heat island effect), the vulnerability of the infrastructure (poor standards of drainage, disorganized water management systems and decreased permeability of the earth as a result of the city’s rapid development), and the capacity of the response system (mainly dependent on the awareness of the citizens, warning systems and the capacity of the emergency rescue). Implication Many risk management measures have been implemented as a result of this flood, including water level warning marks, flood safety education and warnings sent to mobile phones, a project to move about 74,500 farmers away from the flood-prone areas within 5 years. However, further measures targeted at the fundamental issues identified by this analysis are necessary, especially those targeting at health issues. These may include better planning, improved drainage systems and ecological development to increase permeability etc..
Resumo:
Nitrogen is an important nutrient that can impact the quality of aquatic environments when present in high concentration. Even though low concentration levels of ammonium-nitrogen have been observed in laboratory studies in bioretention basins, poor removal or even the production of nitrate-nitrogen within the filter is often recorded in such studies. Ten Perspex biofilter columns of 94 mm (internal diameter) were packed with a filter layer, transition layer and a gravel layer. While the filter layer was packed to a height of 800 mm, transition and gravel layers were packed to a composite height of 220 mm and operated with simulated stormwater in the laboratory. The filter layer contained 8% organic material by weight. A free board of 350 mm provided detention storage and head to facilitate infiltration. The columns were operated with different antecedent dry days (0 d to 21 d) and constant inflow concentration at a feed rate of 100 mL/min. Samples were collected from the outflow at different time intervals, between 2 min and 150 min from the start of outflow, and were tested for nitrate-nitrogen and total organic carbon. Washoff of organic carbon from the filter layer was observed to occur for 30 min of outflow. This indicated washoff of organic carbon from the filter itself. At the same time, a very low concentration of nitrate-nitrogen was recorded at the beginning of the outflow, indicating the effective removal of nitrate-nitrogen. We conclude that the removal of nitrate-nitrogen is insignificant during the wetting phase of a rainfall event and the process of denitrification is more pronounced during the drying phase of a rainfall event. Thus intermittent wetting and drying is crucial for the removal of nitrate-nitrogen in bioretention basins.
Resumo:
In this paper we discuss the use of a series of column experiments to improve understanding of the effect irrigation water chemistry (saline solutions) has on measurements of saturated hydraulic conductivity (Ksat) of a sodic clay soil. We highlight in particular the use of extended leaching periods to determine whether the duration of leaching affects the results. In the experiments, mixed cation solutions of two different salinity levels, 50 meq/L and 100 meq/L, were applied under constant head to columns of a repacked sodic clay soil using three replicates for each treatment. The maximum Ksat measured during leaching with the 100 meq/L solution was approximately double the maximum Ksat measured during leaching with the 50 meq/L solution. Measured flow rates were found to increase rapidly after flow commenced then decrease gradually until flow rates became stable. The final, stable flow rate was roughly 80% less than the maximum flow rate measured. Reasons for these changes in saturated hydraulic conductivity are discussed. The key finding from these experiments is that long term leaching, involving significantly more pore volumes than is commonly reported in the literature, is required to obtain a ‘stable’ Ksat. We recommend that further studies be carried out to (1) determine whether similar behaviour in Ksat occurs in a wide range of sodic clay soils and (2) to help build a better understanding of the causes and implications of the observed behaviour in Ksat.
Resumo:
Contamination of pesticides, which are applied to rice paddy fields, in river water has been a major problem in Japan for decades. A prolonged water holding period after pesticide application in paddy fields is expected to reduce the concentration of rice pesticides in river water. Therefore, a long monitoring campaign was conducted from 2004 to 2010 to measure the concentrations of pesticides in water samples collected from several points along the Chikugo River (Japan) including tributaries and the main stream to see if there was any reduction in the level of pesticide contamination after the extension of the water holding period (from 3–4 days to 7 days) was introduced in 2007 by the new water management regulation. No significant difference (p > 0.05) was found in pesticide concentrations between the periods before and after 2007 in all monitoring points, except in one tributary where the pesticide concentrations after 2007 were even higher than that of the previous period. A detailed study in one of the tributaries also revealed that the renovated infrastructure did not reduce the pesticide concentrations in the drainage canals. Neither the introduction of the new regulation nor the improved infrastructure had any significant effect on reducing the contamination of pesticides in water of the Chikugo River. It is probably because most farmers did not properly implement the new requirement of holding paddy water within the field for 7 days after the application of pesticides. Only tightening the regulation would not be sufficient and more actions should be taken to enforce/provide extension support for the new water management regulation in order to reduce the level of residual pesticides in river water in Japan.
Resumo:
A set of packed micro paddy lysimeters, placed in a greenhouse, was used to simulate the dissipation of two herbicides, simetryn and thiobencarb, in a controlled environment. Data from a field monitoring study in 2003, including the soil condition and water balances, were used in the simulation. The herbicides were applied and monitored over a period of 21 d. The water balances under two water management scenarios, intermittent irrigation management (AI) and continuous irrigation management (CI), were simulated. In the AI scenario, the pattern of herbicide dissipation in the surface water of the field were simulated, following the first-order kinetics. In the CI scenario, similarity was observed in most lysimeter and field concentrations, but there were differences in some data points. Dissipation curves of both herbicides in the surface water of the two simulated scenarios were not significantly different (P > 0.05) from the field data except for intercept of the thiobencarb curve in the CI scenario. The distribution of simetryn and thiobencarb in the soil profile after simulation were also similar to the field data. The highest concentrations of both herbicides were found on the topsoil layer at 0-2.5 cm depth. Only a small amount of herbicides moved down to the deeper soil layers. Micro paddy lysimeters are thus a good alternative for the dissipation study of pesticides in the paddy environment.
Resumo:
The applicability of ELISA kits was evaluated as an alternative to monitor bensulfuron-methyl and simetryn behavior in paddy water under intermittent (Plot 1) and continuous (Plot 2) irrigation schemes. Simetryn concentrations in both plots decreased exponentially from the peak of the first day. However, the simetryn kit systematically underestimated by a factor of 0.79 as compared to the GC method. Bensulfuron-methyl concentrations exhibited similar dissipation kinetics in paddy water and the drainage water. The bensulfuron-methyl kit was capable of distinguishing spatial variations of concentrations in the paddy field. The ELISA kits clearly indicated differences in the loss of both herbicides between the two plots and therefore may be useful for evaluating the water management practice of pesticide runoff control in paddy fields.
Resumo:
A simulation model (PCPF-B) was developed based on the PCPF-1 model to predict the runoff of pesticides from paddy plots to a drainage canal in a paddy block. The block-scale model now comprises three modules: (1) a module for pesticide application, (2) a module for pesticide behavior in paddy fields, and (3) a module for pesticide concentration in the drainage canal. The PCPF-B model was first evaluated by published data in a single plot and then was applied to predict the concentration of bensulfuron-methyl in one paddy block in the Sakura river basin, Ibaraki, Japan, where a detailed field survey was conducted. The PCPF-B model simulated well the behavior of bensulfuron-methyl in individual paddy plots. It also reflected the runoff pattern of bensulfuron-methyl at the block outlet, although overestimation of bensulfuronmethyl concentrations occurred due to uncertainty in water balance estimation. Application of water management practice such as water-holding period and seepage control also affected the performance of the model. A probabilistic approach may be necessary for a comprehensive risk assessment in large-scale paddy areas.
Resumo:
For many complex natural resources problems, planning and management efforts involve groups of organizations working collaboratively through networks (Agranoff, 2007; Booher & Innes, 2010). These networks sometimes involve formal roles and relationships, but often include informal elements (Edelenbos & Klijn, 2007). All of these roles and relationships undergo change in response to changes in personnel, priorities and policy. There has been considerable focus in the planning and public policy literature on describing and characterizing these networks (Mandell & Keast, 2008; Provan & Kenis, 2007). However, there has been far less research assessing how networks change and adjust in response to policy and political change. In the Australian state of Queensland, Natural Resource Management (NRM) organizations were created as lead organizations to address land and water management issues on a regional basis with Commonwealth funding and state support. In 2012, a change in state government signaled a dramatic change in policy that resulted in a significant reduction of state support and commitment. In response to this change, NRM organizations have had to adapt their networks and relationships. In this study, we examine the issues of network relationships, capacity and changing relationships over time using written surveys and focus groups with NRM CEOs, managers and planners (note: data collection events scheduled for March and April 2015). The research team will meet with each of these three groups separately, conduct an in-person survey followed by a facilitated focus group discussion. The NRM participant focus groups will also be subdivided by region, which correlates with capacity (inland/low capacity; coastal/high capacity). The findings focus on how changes in state government commitment have affected NRM networks and their relationships with state agencies. We also examine how these changes vary according to the level within the organization and the capacity of the organization. We hypothesize that: (1) NRM organizations have struggled to maintain capacity in the wake of state agency withdrawal of support; (2) NRM organizations with the lowest capacity have been most adversely affected, while some high capacity NRM organizations may have become more resilient as they have sought out other partners; (3) Network relationships at the highest levels of the organization have been affected the most by state policy change; (4) NRM relationships at the lowest levels of the organizations have changed the least, as formal relationships are replaced by informal networks and relationships.
Resumo:
Dwindling water supplies for irrigation are prompting alternative management choices by irrigators. Limited irrigation, where less water is applied than full crop demand, may be a viable approach. Application of limited irrigation to corn was examined in this research. Corn was grown in crop rotations with dryland, limited irrigation, or full irrigation management from 1985 to 1999. Crop rotations included corn following corn (continuous corn), corn following wheat, followed by soybean (wheat-corn-soybean), and corn following soybean (corn-soybean). Full irrigation was managed to meet crop evapotranspiration requirements (ETc). Limited irrigation was managed with a seasonal target of no more than 150 mm applied. Precipitation patterns influenced the outcomes of measured parameters. Dryland yields had the most variation, while fully irrigated yields varied the least. Limited irrigation yields were 80% to 90%> of fully irrigated yields, but the limited irrigation plots received about half the applied water. Grain yields were significantly different among irrigation treatments. Yields were not significantly different among rotation treatments for all years and water treatments. For soil water parameters, more statistical differences were detected among the water management treatments than among the crop rotation treatments. Economic projections of these management practices showed that full irrigation produced the most income if water was available. Limited irrigation increased income significantly from dryland management.
Resumo:
The driving force behind this study has been the need to develop and apply methods for investigating the hydrogeochemical processes of significance to water management and artificial groundwater recharge. Isotope partitioning of elements in the course of physicochemical processes produces isotopic variations to their natural reservoirs. Tracer property of the stable isotope abundances of oxygen, hydrogen and carbon has been applied to investigate hydrogeological processes in Finland. The work described here has initiated the use of stable isotope methods to achieve a better understanding of these processes in the shallow glacigenic formations of Finland. In addition, the regional precipitation and groundwater records will supplement the data of global precipitation, but as importantly, provide primary background data for hydrological studies. The isotopic composition of oxygen and hydrogen in Finnish groundwaters and atmospheric precipitation was determined in water samples collected during 1995 2005. Prior to this study, no detailed records existed on the spatial or annual variability of the isotopic composition of precipitation or groundwaters in Finland. Groundwaters and precipitation in Finland display a distinct spatial distribution of the isotopic ratios of oxygen and hydrogen. The depletion of the heavier isotopes as a function of increasing latitude is closely related to the local mean surface temperature. No significant differences were observed between the mean annual isotope ratios of oxygen and hydrogen in precipitation and those in local groundwaters. These results suggest that the link between the spatial variability in the isotopic composition of precipitation and local temperature is preserved in groundwaters. Artificial groundwater recharge to glaciogenic sedimentary formations offers many possibilities to apply the isotopic ratios of oxygen, hydrogen and carbon as natural isotopic tracers. In this study the systematics of dissolved carbon have been investigated in two geochemically different glacigenic groundwater formations: a typical esker aquifer at Tuusula, in southern Finland and a carbonate-bearing aquifer with a complex internal structure at Virttaankangas, in southwest Finland. Reducing the concentration of dissolved organic carbon (DOC) in water is a primary challenge in the process of artificial groundwater recharge. The carbon isotope method was used to as a tool to trace the role of redox processes in the decomposition of DOC. At the Tuusula site, artificial recharge leads to a significant decrease in the organic matter content of the infiltrated water. In total, 81% of the initial DOC present in the infiltrated water was removed in three successive stages of subsurface processes. Three distinct processes in the reduction of the DOC content were traced: The decomposition of dissolved organic carbon in the first stage of subsurface flow appeared to be the most significant part in DOC removal, whereas further decrease in DOC has been attributed to adsorption and finally to dilution with local groundwater. Here, isotope methods were used for the first time to quantify the processes of DOC removal in an artificial groundwater recharge. Groundwaters in the Virttaankangas aquifer are characterized by high pH values exceeding 9, which are exceptional for shallow aquifers on glaciated crystalline bedrock. The Virttaankangas sediments were discovered to contain trace amounts of fine grained, dispersed calcite, which has a high tendency to increase the pH of local groundwaters. Understanding the origin of the unusual geochemistry of the Virttaankangas groundwaters is an important issue for constraining the operation of the future artificial groundwater plant. The isotope ratios of oxygen and carbon in sedimentary carbonate minerals have been successfully applied to constrain the origin of the dispersed calcite in the Virttaankangas sediments. The isotopic and chemical characteristics of the groundwater in the distinct units of aquifer were observed to vary depending on the aquifer mineralogy, groundwater residence time and the openness of the system to soil CO2. The high pH values of > 9 have been related to dissolution of calcite into groundwater under closed or nearly closed system conditions relative to soil CO2, at a low partial pressure of CO2.
Resumo:
Relatively few studies have addressed water management and adaptation measures in the face of changing water balances due to climate change. The current work studies climate change impact on a multipurpose reservoir performance and derives adaptive policies for possible futurescenarios. The method developed in this work is illustrated with a case study of Hirakud reservoir on the Mahanadi river in Orissa, India,which is a multipurpose reservoir serving flood control, irrigation and power generation. Climate change effects on annual hydropower generation and four performance indices (reliability with respect to three reservoir functions, viz. hydropower, irrigation and flood control, resiliency, vulnerability and deficit ratio with respect to hydropower) are studied. Outputs from three general circulation models (GCMs) for three scenarios each are downscaled to monsoon streamflow in the Mahanadi river for two future time slices, 2045-65 and 2075-95. Increased irrigation demands, rule curves dictated by increased need for flood storage and downscaled projections of streamflow from the ensemble of GCMs and scenarios are used for projecting future hydrologic scenarios. It is seen that hydropower generation and reliability with respect to hydropower and irrigation are likely to show a decrease in future in most scenarios, whereas the deficit ratio and vulnerability are likely to increase as a result of climate change if the standard operating policy (SOP) using current rule curves for flood protection is employed. An optimal monthly operating policy is then derived using stochastic dynamic programming (SDP) as an adaptive policy for mitigating impacts of climate change on reservoir operation. The objective of this policy is to maximize reliabilities with respect to multiple reservoir functions of hydropower, irrigation and flood control. In variations to this adaptive policy, increasingly more weightage is given to the purpose of maximizing reliability with respect to hydropower for two extreme scenarios. It is seen that by marginally sacrificing reliability with respect to irrigation and flood control, hydropower reliability and generation can be increased for future scenarios. This suggests that reservoir rules for flood control may have to be revised in basins where climate change projects an increasing probability of droughts. However, it is also seen that power generation is unable to be restored to current levels, due in part to the large projected increases in irrigation demand. This suggests that future water balance deficits may limit the success of adaptive policy options. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An integrated reservoir operation model is presented for developing effective operational policies for irrigation water management. In arid and semi-arid climates, owing to dynamic changes in the hydroclimatic conditions within a season, the fixed cropping pattern with conventional operating policies, may have considerable impact on the performance of the irrigation system and may affect the economics of the farming community. For optimal allocation of irrigation water in a season, development of effective mathematical models may guide the water managers in proper decision making and consequently help in reducing the adverse effects of water shortage and crop failure problems. This paper presents a multi-objective integrated reservoir operation model for multi-crop irrigation system. To solve the multi-objective model, a recent swarm intelligence technique, namely elitist-mutated multi-objective particle swarm optimisation (EM-MOPSO) has been used and applied to a case study in India. The method evolves effective strategies for irrigation crop planning and operation policies for a reservoir system, and thereby helps farming community in improving crop benefits and water resource usage in the reservoir command area.