984 resultados para Warm Asphalt Binder,SBS,Dynamic Shear Rheometer,Rotational Viscometer,Equiviscosit
Resumo:
This study evaluated in vitro the shear bond strength of a resin-based pit-and-fissure sealant (Fluroshield - F) associated with either an ethanol-based (Adper Single Bond 2 - SB) or an acetone-based (Prime & Bond - PB) adhesive system under conditions of oil contamination. Mesial and distal enamel surfaces from 30 sound third molars were randomly assigned to 2 groups (n=30): I - no oil contamination; II - oil contamination. Contamination (0.25 mL during 10 s) was performed after 37% phosphoric acid etching with an air/oil spray. The specimens were randomly assigned to subgroups, according to the bonding protocol adopted: subgroup A - F was applied to enamel without an intermediate bonding agent layer; In subgroups B and C, SB and PB, respectively, were applied, light-cured, and then F was applied and light-cured. Shear bond strength was tested at a crosshead speed of 0.5 mm/min in a universal testing machine. Means (± SD) in MPa were: IA-11.28 (±1.84); IIA-12.02 (±1.15); IB-9.73 (±2.38); IIB-9.62 (±2.29); IC-28.30 (±1.63); and IIC-25.50 (±1.91). It may be concluded that the oil contamination affected negatively the sealant bonding to enamel and the acetone-based adhesive system (PB) layer applied underneath the sealant was able to prevent its deleterious effects to adhesion.
Resumo:
The purpose of this study was to evaluate the dentin shear bond strength of four adhesive systems (Adper Single Bond 2, Adper Prompt L-Pop, Magic Bond DE and Self Etch Bond) in regards to buccal and lingual surfaces and dentin depth. Forty extracted third molars had roots removed and crowns bisected in the mesiodistal direction. The buccal and lingual surfaces were fixed in a PVC/acrylic resin ring and were divided into buccal and lingual groups assigned to each selected adhesive. The same specimens prepared for the evaluation of superficial dentin shear resistance were used to evaluate the different depths of dentin. The specimens were identified and abraded at depths of 0.5, 1.0, 1.5 and 2.0 mm. Each depth was evaluated by ISO TR 11405 using an EMIC-2000 machine regulated at 0.5 mm/min with a 200 Kgf load cell. We performed statistical analyses on the results (ANOVA, Tukey and Scheffé tests). Data revealed statistical differences (p < 0.01) in the adhesive and depth variation as well as adhesive/depth interactions. The Adper Single Bond 2 demonstrated the highest mean values of shear bond strength. The Prompt L-Pop product, a self-etching adhesive, revealed higher mean values compared with Magic Bond DE and Self Etch Bond adhesives, a total and self-etching adhesive respectively. It may be concluded that the shear bond strength of dentin is dependent on material (adhesive system), substrate depth and adhesive/depth interaction.
Resumo:
The success of metal-ceramic restorations depends on an optimal bond between metal and ceramic. This study evaluated the effect of 3 casting atmospheres on the metal-ceramic bond strength (MCBS) of 2 Ni-Cr alloys, with beryllium (Fit Cast V) and without beryllium (Fit Cast SB). Sixty acrylic resin patterns (8 mm long and 5 mm diameter) were obtained using a fluorocarbon resin matrix. Wax was used to refine the surface of acrylic resin patterns that were invested and cast in an induction casting machine under normal, vacuum, and argon atmospheres at a temperature of 1340ºC. The castings were divested manually and airborne-particle abraded with 100-µm aluminum-oxide. Ten castings were obtained for each group. The IPS Classic V ceramic was applied (2 mm high and 5 mm diameter). The shear bond strength was tested in a mechanical testing machine with a crosshead speed of 2.0 mm/min. The MCBS data (MPa) were subjected to 2-way analysis of variance (α=0.05). There was no statistically significant difference (p>0.05) between the alloys or among the casting atmospheres. Within the limitations of this study, it may be concluded that the presence of beryllium and the casting atmosphere did not interfere in the MCBS of the evaluated metal-ceramic combinations
Resumo:
This study evaluated in vitro the shear bond strength (SBS) of a resin-based pit-and-fissure sealant [Fluroshield (F), Dentsply/Caulk] associated with either an etch-and-rinse [Adper Single Bond 2 (SB), 3M/ESPE] or a self-etching adhesive system [Clearfil S3 Bond (S3), Kuraray Co., Ltd.] to saliva-contaminated enamel, comparing two curing protocols: individual light curing of the adhesive system and the sealant or simultaneous curing of both materials. Mesial and distal enamel surfaces from 45 sound third molars were randomly assigned to 6 groups (n=15), according to the bonding technique: I - F was applied to 37% phosphoric acid etched enamel. The other groups were contaminated with fresh human saliva (0.01 mL; 10 s) after acid etching: II - SB and F were light cured separately; III - SB and F were light cured together; IV - S3 and F were light cured separately; V - S3 and F were light cured simultaneously; VI - F was applied to saliva-contaminated, acid-etched enamel without an intermediate bonding agent layer. SBS was tested to failure in a universal testing machine at 0.5 mm/min. Data were analyzed by one-way ANOVA and Fisher's test (α=0.05).The debonded specimens were examined with a stereomicroscope to assess the failure modes. Three representative specimens from each group were observed under scanning electron microscopy for a qualitative analysis. Mean SBS in MPa were: I-12.28 (±4.29); II-8.57 (±3.19); III-7.97 (±2.16); IV-12.56 (±3.11); V-11.45 (±3.77); and VI-7.47 (±1.99). In conclusion, individual or simultaneous curing of the intermediate bonding agent layer and the resin sealant did not seem to affect bond strength to saliva-contaminated enamel. S3/F presented significantly higher SBS than the that of the groups treated with SB etch-and-rinse adhesive system and similar SBS to that of the control group, in which the sealant was applied under ideal dry, noncontaminated conditions.
Resumo:
Este trabalho apresenta uma análise das condições sinótica e dinâmica associadas ao desenvolvimento do ciclone ocorrido entre 12 e 19 de setembro de 2008, com o objetivo de destacar diferenças e semelhanças com o ambiente em que se inseriu o evento Catarina em março de 2004. As principais semelhanças foram encontradas no padrão sinótico geral: a ocorrência de um padrão típico de bloqueio do tipo dipolo associado à anomalia de vorticidade potencial em altos níveis; cavado em níveis médios com inclinação para oeste; a presença de uma coluna de vorticidade ciclônica desde a superfície até a baixa estratosfera; e, em superfície, o padrão de uma alta ao sul de uma baixa pressão. Apesar das semelhanças no padrão geral, diferenças ocorreram entre os dois eventos que influenciaram na intensidade dos sistemas: o Catarina ocorreu em latitudes mais baixas em relação ao caso de setembro de 2008; o padrão típico de bloqueio associado ao caso de setembro de 2008 durou um dia e meio, enquanto no evento Catarina foi de três dias; a configuração da advecção de temperatura na camada entre 1000-500 hPa favoreceu o deslocamento do evento de setembro de 2008 para leste/sudeste, ao contrário do Catarina, a advecção de ar quente a leste do ciclone foi praticamente suprimida e a tendência de altura geopotencial passou a ser positiva, padrões que impedem o deslocamento do sistema para leste; no caso de setembro de 2008 o padrão da inversão do gradiente meridional de temperatura potencial na superfície de -2,0 unidade de vorticidade potencial (UVP) foi caracterizado pela incursão de uma região alongada de ar quente vinda do equador em direção ao sul e ar frio vinda do sul em direção ao equador, enquanto no caso Catarina a inversão ocorre pelo isolamento de uma bolha de ar frio ao norte e uma bolha de ar quente ao sul, o que pode ter contribuído para maior duração do padrão de bloqueio, pois a dissipação neste caso é dificultada. Sistemas como o Catarina podem ser raros no Atlântico Sul, mas isso não ocorre em relação ao ambiente sinótico em que se formou o Catarina. Para melhor entender o processo atmosférico que levou à formação do Catarina, é necessário realizar experimentos numéricos de sensibilidade para o caso de setembro de 2008 com o objetivo de verificar a possibilidade do ciclone extratropical se tornar um ciclone tropical.
Resumo:
Structural analysis carried out on a segment of the Neoproterozoic Ribeira Belt, southeastern Brazil, show that it represents part of the transpressive dextral orogen related to the Central Mantiqueira Province. NNE-trending and steeply dipping regional mylonitic belts form anastomosed geometry, and describe a map-scale, S-C-like structure that is characterized by their deflection towards NE near the Além Paraíba Lineament. Lithological and structural control related to deformation partition were responsible for the formation of felsic mylonitic granulites with S-type granites lenses developed in ductile shear zones, alternated with less deformed intermediate to basic granulites associated with charnockites. The dextral shear sense indicators are consistent with transpressive deformation in the region and are common especially at the border of the main shear zones. The presence of S-type leucogranite may lead to variations of linear and planar relationships, which result in local extension zones. These elements are consistent with oblique continental collision considering the São Francisco Craton as a stable block.
Resumo:
This work describes the infrared spectroscopy characterization and the charge compensation dynamics in supramolecular film FeTPPZFeCN derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) with hexacyanoferrate, as well as the hybrid film formed by FeTPPZFeCN and polypyrrole (PPy). For supramolecular film, it was found that anion flux is greater in a K+ containing solution than in Li+ solution, which seems to be due to the larger crystalline ionic radius of K+. The electroneutralization process is discussed in terms of electrostatic interactions between cations and metallic centers in the hosting matrix. The nature of the charge compensation process differs from others modified electrodes based on Prussian blue films, where only cations such as K+ participate in the electroneutralization process. In the case of FeTPPZFeCN/PPy hybrid film, the magnitude of the anions’s flux is also dependent on the identity of the anion of the supporting electrolyte.
Resumo:
Syrups with high sugar content and dehydrated fruits in its composition can be added to chocolate fillings to reduce the need of artificial flavor and dyes attributing a natural appeal to the product. Fruit bases were produced with lyophilized strawberry, passion fruit, and sliced orange peel. Rheological dynamic oscillatory tests were applied to determine the products stability and tendency of shelf life. Values of G´< G´´ were observed for strawberry and passion fruit flavor, whereas values of G´ > G´´ were found for orange flavor during the 90 days of storage. It was observed that shear stress values did not vary significantly suggesting product stability during the studied period. For all fillings, it was found a behavior similar to the fruit base indicating that it has great influence on the filling behavior and its stability. The use of a sugar matrix in fillings provided good shelf life for the fruit base, which could be kept under room temperature conditions for a period as long as one year. The good stability and storage conditions allow the use of fruit base for handmade products as well as for industrialized products.
Resumo:
This paper presents a rational approach to the design of a catamaran's hydrofoil applied within a modern context of multidisciplinary optimization. The approach used includes the use of response surfaces represented by neural networks and a distributed programming environment that increases the optimization speed. A rational approach to the problem simplifies the complex optimization model; when combined with the distributed dynamic training used for the response surfaces, this model increases the efficiency of the process. The results achieved using this approach have justified this publication.
Resumo:
This work is part of a research under construction since 2000, in which the main objective is to measure small dynamic displacements by using L1 GPS receivers. A very sensible way to detect millimetric periodic displacements is based on the Phase Residual Method (PRM). This method is based on the frequency domain analysis of the phase residuals resulted from the L1 double difference static data processing of two satellites in almost orthogonal elevation angle. In this article, it is proposed to obtain the phase residuals directly from the raw phase observable collected in a short baseline during a limited time span, in lieu of obtaining the residual data file from regular GPS processing programs which not always allow the choice of the aimed satellites. In order to improve the ability to detect millimetric oscillations, two filtering techniques are introduced. One is auto-correlation which reduces the phase noise with random time behavior. The other is the running mean to separate low frequency from the high frequency phase sources. Two trials have been carried out to verify the proposed method and filtering techniques. One simulates a 2.5 millimeter vertical antenna displacement and the second uses the GPS data collected during a bridge load test. The results have shown a good consistency to detect millimetric oscillations.
Resumo:
Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range.
Resumo:
Objectives: We tested whether angiotensin converting enzyme (ACE) and phosphorylation of Ser(1270) are involved in shear-stress (SS)-induced downregulation of the enzyme. Methods and Results: Western blotting analysis showed that SS (18 h, 15 dyn/cm(2)) decreases ACE expression and phosphorylation as well as p-JNK inhibition in human primary endothelial cells (EC). CHO cells expressing wild-type ACE (wt-ACE) also displayed SS-induced decrease in ACE and p-JNK. Moreover, SS decreased ACE promoter activity in wt-ACE, but had no effect in wild type CHO or CHO expressing ACE without either the extra-or the intracellular domains, and decreased less in CHO expressing a mutated ACE at Ser(1270) compared to wt-ACE (13 vs. 40%, respectively). The JNK inhibitor (SP600125, 18 h), in absence of SS, also decreased ACE promoter activity in wt-ACE. Finally, SS-induced inhibition of ACE expression and phosphorylation in EC was counteracted by simultaneous exposure to an ACE inhibitor. Conclusions: ACE displays a key role on its own downregulation in response to SS. This response requires both the extra- and the intracellular domains and ACE Ser(1270), consistent with the idea that the extracellular domain behaves as a mechanosensor while the cytoplasmic domain elicits the downstream intracellular signaling by phosphorylation on Ser(1270).
Resumo:
It has been demonstrated that human adipose tissue-derived mesenchymal stem cells (hASCs) enhance vascular density in ischemic tissues, suggesting that they can differentiate into vascular cells or release angiogenic factors that may stimulate neoangiogenesis. Moreover, there is evidence that shear stress (SS) may activate proliferation and differentiation of embryonic and endothelial precursor stem cells into endothelial cells (ECs). In this work, we investigated the effect of laminar SS in promoting differentiation of hASCs into ECs. SS (10 dyn/cm(2) up to 96 h), produced by a cone plate system, failed to induce EC markers (CD31, vWF, Flk-1) on hASC assayed by RT-PCR and flow cytometry. In contrast, there was a cumulative production of nitric oxide (determined by Griess Reaction) and vascular endothelial growth factor (VEGF; by ELISA) up to 96 h of SS stimulation ( NO(2)(-) in nmol/10(4) cells: static: 0.20 +/- 0.03; SS: 1.78 +/- 0.38, n = 6; VEGF in pg/10(4) cells: static: 191.31 +/- v35.29; SS: 372.80 +/- 46.74, n = 6, P < 0.05). Interestingly, the VEGF production was abrogated by 5 mM N(G)-L-nitro-arginine methyl ester (L-NAME) treatment (VEGF in pg/10(4) cells: SS: 378.80 +/- 46.74, n = 6; SS + L-NAME: 205.84 +/- 91.66, n = 4, P < 0.05). The results indicate that even though SS failed to induce EC surface markers in hASC under the tested conditions, it stimulated NO-dependent VEGF production.
Resumo:
Background: Rotational osteotomy is frequently indicated to correct excessive femoral anteversion in cerebral palsy patients. Angled blade plate is the standard fixation device used when performed in the proximal femur, but extensile exposure is required for plate accommodation. The authors developed a short locked intramedullary nail to be applied percutaneously in the fixation of femoral rotational osteotomies in children with cerebral palsy and evaluated its mechanical properties. Methods: The study was divided into three stages. In the first part, a prototype was designed and made based on radiographic measurements of the femoral medullary canal of ten-year-old patients. In the second, synthetic femoral models based on rapid-prototyping of 3D reconstructed images of patients with cerebral palsy were obtained and were employed to adjust the nail prototype to the morphological changes observed in this disease. In the third, rotational osteotomies were simulated using synthetic femoral models stabilized by the nail and by the AO-ASIF fixed-angle blade plate. Mechanical testing was done comparing both devices in bending-compression and torsion. Results: The authors observed proper adaptation of the nail to normal and morphologically altered femoral models, and during the simulated osteotomies. Stiffness in bending-compression was significantly higher in the group fixed by the plate (388.97 +/- 57.25 N/mm) than in that fixed by the nail (268.26 +/- 38.51 N/mm) as torsional relative stiffness was significantly higher in the group fixed by the plate (1.07 +/- 0.36 Nm/degrees) than by the nail (0.35 +/- 0.13 Nm/degrees). Conclusions: Although the device presented adequate design and dimension to fit into the pediatric femur, mechanical tests indicated that the nail was less stable than the blade plate in bending-compression and torsion. This may be a beneficial property, and it can be attributed to the more flexible fixation found in intramedullary devices.
Resumo:
Background: Detailed analysis of the dynamic interactions among biological, environmental, social, and economic factors that favour the spread of certain diseases is extremely useful for designing effective control strategies. Diseases like tuberculosis that kills somebody every 15 seconds in the world, require methods that take into account the disease dynamics to design truly efficient control and surveillance strategies. The usual and well established statistical approaches provide insights into the cause-effect relationships that favour disease transmission but they only estimate risk areas, spatial or temporal trends. Here we introduce a novel approach that allows figuring out the dynamical behaviour of the disease spreading. This information can subsequently be used to validate mathematical models of the dissemination process from which the underlying mechanisms that are responsible for this spreading could be inferred. Methodology/Principal Findings: The method presented here is based on the analysis of the spread of tuberculosis in a Brazilian endemic city during five consecutive years. The detailed analysis of the spatio-temporal correlation of the yearly geo-referenced data, using different characteristic times of the disease evolution, allowed us to trace the temporal path of the aetiological agent, to locate the sources of infection, and to characterize the dynamics of disease spreading. Consequently, the method also allowed for the identification of socio-economic factors that influence the process. Conclusions/Significance: The information obtained can contribute to more effective budget allocation, drug distribution and recruitment of human skilled resources, as well as guiding the design of vaccination programs. We propose that this novel strategy can also be applied to the evaluation of other diseases as well as other social processes.